
A Measurement and Simulation
Methodology for Parallel Computing

Performance Studies

by

Matthew Joseph Sottile

B.S., University of Oregon, 1999

M.S., Computer Science, University of Oregon, 2001

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

May 2006



c©2006, Matthew Joseph Sottile

iii



Dedication

To my family.

iv



Acknowledgments

The Los Alamos National Laboratory1, in particular my manager, Ronald Minnich,
allowed me time and resources to perform the work in this thesis. His advice and
assistance was invaluable in the execution of this work, most often when my mind
wandered down paths that deserved a dissertation of their own.

My summer student Vaddadi Chandu assisted in the creation of the Chama sim-
ulation prototype. Sung-Eun Choi and Erik Hendriks provided valuable feedback
and assistance during the development of the FTQ microbenchmark.

The Department of Energy Mathematical, Information, and Computational Sci-
ences group of the Office of Science funded this research. The ASCI Flash code used
in this work was in part developed by the DOE-supported ASC / Alliance Center
for Astrophysical Thermonuclear Flashes at the University of Chicago.

The University of Oregon Neuroinformatics Center kindly provided parallel sys-
tems on which I performed many experimental studies.

Finally, I would like to thank my committee, Barney Maccabe, Ron Minnich,
Bernard Moret, Jared Saia, and most of all, my advisor David Bader. David kept
me on track and provided the positive guidance that got me through the process.

1Los Alamos National Laboratory is operated by the University of California for the

National Nuclear Security Administration of the United States Department of Energy

under contract W-7405-ENG-36, LA-UR No. 06-2395.

v



A Measurement and Simulation
Methodology for Parallel Computing

Performance Studies

by

Matthew Joseph Sottile

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

May 2006



A Measurement and Simulation
Methodology for Parallel Computing

Performance Studies

by

Matthew Joseph Sottile

B.S., University of Oregon, 1999

M.S., Computer Science, University of Oregon, 2001

Ph.D., Engineering, University of New Mexico, 2006

Abstract

Disciplined application of system measurement and performance simulation is a

powerful method for understanding the behavior of parallel programs and comput-

ers. The current state-of-the-art in parallel program performance analysis is focused

on interconnection network and processor performance. The presence of operating

system interference, although recognized as a source of performance degradation, has

not been formally considered in the analysis process.

Distributed memory parallel programs often rely on periods of local computation

that take the same amount of time to complete before synchronous communications

are used to exchange data between processors. When the amount of time varies

between processors, those that execute fastest are left idle while others catch up.

This is particularly damaging to performance when the operations require a global

synchronization where one slow processor can induce wasted, idle time on all others.

vii



The hypothesis of this work is that a disciplined method of interference mea-

surement coupled with a simulation of its effect on parallel programs can enable

performance analysts to consider interference in their diagnosis and tuning process.

This dissertation provides the following new results in this topic area that demon-

strate the viability of this methodology:

1. The design, implementation, and application of the fixed time quantum mi-

crobenchmark for quantifying operating system perturbations on parallel com-

puters is provided, representing the first detailed implementation and analysis

scheme for such measurements.

2. A trace-driven simulation of distributed memory message passing programs is

presented. This contributes to the field of performance analysis the inclusion

of operating system perturbations as a parameter for performance simulation.

3. Performance sensitivity studies for several real-world parallel applications are

given using the microbenchmarking and simulation tools.

This work shows that quantification of interference is possible through carefully

constructed microbenchmarks, one of which has been demonstrated and is now in

use by researchers in the field. The simulation tools developed to analyze the effect

of this noise have extended the capability of existing analysis tools to integrate this

new performance affecting parameter. Finally, this work demonstrates that the mea-

surement and simulation methods can be applied to real codes to reason about their

performance sensitivity.

viii



Contents

List of Figures xiv

List of Tables xviii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Existing Work 9

2.1 Machine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Computational performance . . . . . . . . . . . . . . . . . . . 10

2.1.2 Memory performance . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Communication performance . . . . . . . . . . . . . . . . . . . 13

2.2 Application performance . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Parallel profiling . . . . . . . . . . . . . . . . . . . . . . . . . 14

ix



Contents

2.2.2 Hardware behavior . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Machine characterization 21

3.1 Metrics and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Performance vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Operating system perturbations . . . . . . . . . . . . . . . . . . . . . 26

3.4 Application vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Microbenchmarking 29

4.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 A brief discussion of time . . . . . . . . . . . . . . . . . . . . 35

4.2.2 The Fixed Work Quantum (FWQ) microbenchmark . . . . . . 36

4.2.3 The Fixed Time Quantum (FTQ) microbenchmark . . . . . . 38

4.3 FTQ Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 The FTQ work quantum . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Work unit granularity effects . . . . . . . . . . . . . . . . . . . 45

4.5 Self-perturbations of FTQ . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Hardware and software configuration . . . . . . . . . . . . . . 49

x



Contents

4.6.2 Processor scheduling issues . . . . . . . . . . . . . . . . . . . . 50

4.6.3 Generating a baseline measurement . . . . . . . . . . . . . . . 51

4.7 FTQ Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7.2 Identifying periodicity . . . . . . . . . . . . . . . . . . . . . . 56

4.7.3 Statistical ambiguity . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Data analysis revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8.1 Statistics for FTQ analysis . . . . . . . . . . . . . . . . . . . . 62

4.8.2 Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Conclusions and ongoing work . . . . . . . . . . . . . . . . . . . . . . 65

5 Trace-driven performance sensitivity analysis 67

5.1 Absorption measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Trace-based delay simulation . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Related work on trace-driven performance analysis . . . . . . 71

5.3 The message-passing graph concept . . . . . . . . . . . . . . . . . . . 73

5.4 Graph primitives for a subset of MPI-1 . . . . . . . . . . . . . . . . . 75

5.4.1 Pairwise primitives . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Collective primitives . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Creation of message-passing graph . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Avoiding clock synchronization . . . . . . . . . . . . . . . . . 82

xi



Contents

5.5.2 An implementation of the graph construction algorithm . . . . 83

5.5.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Parameterizing simulated perturbations . . . . . . . . . . . . . . . . . 87

5.6.1 Operating system noise . . . . . . . . . . . . . . . . . . . . . . 88

5.6.2 Interconnection network performance . . . . . . . . . . . . . . 89

5.6.3 Parameterization of perturbers . . . . . . . . . . . . . . . . . 90

5.7 Implementation and example application . . . . . . . . . . . . . . . . 94

5.7.1 Token ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Future work for Chama . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Chama simulation engine structure . . . . . . . . . . . . . . . . . . . 97

5.9.1 Message passing graph construction . . . . . . . . . . . . . . . 103

5.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.10.1 Scalability studies . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.10.2 Non-determinism . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Experimental studies 111

6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Simulator performance . . . . . . . . . . . . . . . . . . . . . . 112

6.2 FTQ results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Cache effects and self-interference . . . . . . . . . . . . . . . . 115

6.2.2 FTQ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xii



Contents

6.3 Experimental setup for Chama studies . . . . . . . . . . . . . . . . . 123

6.3.1 Delay propagation details . . . . . . . . . . . . . . . . . . . . 124

6.4 Sweep3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 The NAS Parallel Benchmarks . . . . . . . . . . . . . . . . . . . . . . 127

6.6 ASCI FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.7 Comparison of codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusion 135

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

References 139

xiii



List of Figures

1.1 Illustration of skewed arrival times at collective operations. Shaded

bar represents time spent at a collective, with P5 reaching it last and

causing idle time on P1 − 4. . . . . . . . . . . . . . . . . . . . . . . 7

3.1 A simple kernel that alternates between phases of local computation

and collective communication. . . . . . . . . . . . . . . . . . . . . . 23

4.1 Interference and how it can slow an application. . . . . . . . . . . . 30

4.2 Pseudocode for the Fixed Work Quantum (FWQ) microbenchmark. 37

4.3 An example of three samples of the FWQ benchmark. . . . . . . . . 37

4.4 Pseudocode for the Fixed Time Quantum (FTQ) microbenchmark. . 39

4.5 FTQ data taken at boot time. Left plot based on fine grained work

quantum, right plot based on coarse work quantum. . . . . . . . . . 44

4.6 A coarser FTQ sampling work quantum that can be unrolled to

(ITERCOUNT*2)-1 integer operations. . . . . . . . . . . . . . . . . . . 44

4.7 C code implementing an analogue of the coarsened FTQ work unit. . 46

xiv



List of Figures

4.8 Unoptimized PowerPC assembly code for C code shown in fig. 4.7 as

generated by GCC 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Activity of FTQ during a single sample . . . . . . . . . . . . . . . . 49

4.10 FTQ raw data at boot and postboot sampling times. . . . . . . . . . 52

4.11 FTQ cepstrum at boot time . . . . . . . . . . . . . . . . . . . . . . 53

4.12 FTQ cepstrum post boot . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Histogram of first-order differenced FTQ data. . . . . . . . . . . . . 55

4.14 Plot of raw data for the FTQ benchmark. . . . . . . . . . . . . . . . 56

4.15 Plot of data for the FTQ benchmark after first-order differencing. . . 57

4.16 Plot of the output from Mathematica Fourier[] function for 2000

consecutive samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.17 Two different time-series with an identical histogram. Shading of

histogram “buckets” corresponds to shading of samples. . . . . . . . 61

5.1 Alternating phases of computation (ci) and messaging (mi) over time. 74

5.2 Subgraph representing a blocking send and receive pair of d bytes

of data. Locations are indicated where operating system noise (δos),

latency (δλ), and bandwidth (δt(d)) are modeled. . . . . . . . . . . . 77

5.3 Subgraph representing a nonblocking send and receive pair of d bytes

of data, and the corresponding wait operations. The send/receive

pair is matched with a wait pair by matching the status flags that

uniquely identify the send/receive transaction. . . . . . . . . . . . . 79

xv



List of Figures

5.4 An AllReduce operator subgraph. The abbreviated noise annotations

on edges are described in the text. . . . . . . . . . . . . . . . . . . . 81

5.5 A message-passing graph for trace data containing blocking MPI

primitives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Empirical distribution derived from FTQ data. The data shows that

small levels of perturbations are likely, and large-scaler perturbations

are rare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 A PMPI implementation of the MPI Send wrapper function. . . . . . 103

5.8 An illustration of non-determinism that can be implemented using

pairwise receives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Three FTQ time series taken on an X41 laptop under varying noise

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Three empirical distribution functions derived from data in Fig. 6.1. 120

6.3 Four FTQ time series representing increasing granularity work quanta.122

6.4 Absorption ratio for a 24 CPU Sweep3d trace under increasing inter-

ference levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Absorption ratio for 16 CPU traces of the Class B NAS CG, LU, and

MG codes under noise on all processes and a single process. . . . . . 129

6.6 Absorption ratio for a 24 CPU FLASH trace with simulated delays

on all processes and a single process. . . . . . . . . . . . . . . . . . . 132

6.7 A comparison of absorption of noise injected on one processor for the

Sweep3d, FLASH, and NAS codes. . . . . . . . . . . . . . . . . . . . 133

xvi



List of Figures

6.8 A comparison of absorption of noise injected on all processors for the

Sweep3d, FLASH, and NAS codes. . . . . . . . . . . . . . . . . . . . 134

xvii



List of Tables

5.1 MPI message passing primitives supported by the simulator and trac-

ing library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Simulation run times for different parameter studies. Rows labeled

(1) indicate simulations of single process noise. . . . . . . . . . . . . 115

6.2 Cache miss statistics for a sampling interval of 220 cycles over 5000

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Cache miss statistics for a sampling interval of 220 cycles over 10000

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 MPI operations used by Sweep3d . . . . . . . . . . . . . . . . . . . . 126

6.5 MPI operations used by NAS CG, MG, and LU. . . . . . . . . . . . 128

6.6 MPI operations used by ASCI FLASH . . . . . . . . . . . . . . . . . 131

xviii



Chapter 1

Introduction

1.1 Overview

The evolution of the parallel computing field has been unique in that unlike other

areas of computing, it pushes the limits of capabilities and moves on immediately

to new technologies before existing ones stabilize. This results in a highly diverse

set of hardware platforms used in the progression of parallel computer architectures.

At the coarsest level, there exist shared and distributed memory platforms, which

have a significant impact on how programs are written to best utilize the computing

resource. Within each memory model, one can further distinguish between mas-

sively parallel computers, clusters of commodity workstations, server class SMPs,

and unique architectures of which on the order of dozens are ever manufactured.

Within each, further variety exists with respect to processor architecture, from com-

modity microprocessors to highly novel designs such as the Cray MTA and IBM Cell,

with all varying in their level of vector versus scalar capability.

Similarly, software used to program and control parallel platforms evolves rapidly

and exhibits a large amount of diversity. Operating systems range from specialized,

1



Chapter 1. Introduction

“light-weight kernels” that offer virtually no features in the interest of minimizing

performance impact, up to full fledged operating systems such as AIX and Linux.

Networking protocols range from general purpose internet protocols through ones op-

timized for custom high-performance interconnection network hardware. Parallelism

is programmed through a number of methods, such as explicit message passing,

threading, or compiled high level languages. Each method has many alternatives

in implementation. Explicit message passing can be achieved using the standard

Message Passing Interface (MPI) library, the older Parallel Virtual Machine (PVM)

library, or more esoteric libraries such as the Aggregate Remote Memory Copy In-

terface (ARMCI) library. A similar diversity exists for each other programming

method.

One of the root causes of complexity in parallel computing derives from this ex-

treme diversity in both hardware and software. A shared memory computer based

on cache-free, massively multi-threaded MTA processors shares virtually no features

in common with a cluster of Ethernet connected Pentium-class workstations. Re-

gardless of this fact, the parallel computing community struggles to rectify the fact

that these systems are treated as equivalent by users. As such, users who wish to

run applications on parallel platforms find that application behavior varies widely

between platforms, and varies differently depending on the structure of their appli-

cation. An application developed on a shared memory SMP may run terribly on a

commodity cluster, while an application that runs well on a basic cluster may per-

form poorly on a tightly coupled, massively parallel collection of relatively simple,

slow processors (as realized in the recent IBM BG/L system). Virtually no tools

exist for exploring both the causes of this performance discrepancy or the expecta-

tion a user can have of performance on a new platform given achieved performance

on an existing system. At best, the parallel computing community has accumulated

a large amount of folklore for system design and programming, along with a set of

cumbersome tools that assist the user in mining through tremendous amounts of

2



Chapter 1. Introduction

parallel program performance data.

This approach is not appropriate for both application performance understanding

and machine procurement and tuning. The limited set of applications and bench-

marks used for machine comparison are representative of only a small set of appli-

cations, and give little to no indication of how a machine will perform under other

workloads that will be faced in practice. Rarely are the actual applications that a

machine is expected to execute in practice used as the evaluation and comparison

tool at the time of purchase.

Similarly, application performance analysis is often an act of platform specific

understanding and tuning. This renders codes of any substantial length difficult to

port, dependent on a specific parallel programming model and runtime implementa-

tion, and difficult to maintain as the semantics of the parallel algorithm become lost

in a growing set of platform specific tunings.

This dissertation presents a methodology for characterizing machine performance

and the requirements and performance limiting factors for applications that fall out-

side the realm of traditional parallel benchmarks. The underlying theme of this

work is that the entire process requires understanding of performance and behav-

ior of both real platforms and applications under real workloads on real machines.

Tasks related to tuning of hardware, operating systems, runtime layers, and appli-

cation codes should not be performed independently, but in concert with each other

following a disciplined, scientific process.

The reliance on idealized benchmarks as a primary means for comparing par-

allel platforms leads to performance discrepancies seen when parallel machines are

acquired and extensive application tuning is required to better utilize the expensive

computational resources that were purchased. Although valuable for characterizing

a small set of specific applications, they disguise actual performance in general cases.

3



Chapter 1. Introduction

The methodology presented here asks the performance analyst to choose benchmarks

and performance measurement tools that better span the space of performance rele-

vant measures.

The proposed methodology is presented in three parts. First, the task of charac-

terizing the performance characteristics of a parallel computer is addressed. Second,

a method by which the performance characteristics of applications can be explored

is presented through trace-driven application simulation. Each part compliments

the other, and each is impossible to rigorously and completely understand in isola-

tion. Thus both are required for a full, defensible analysis of parallel systems and

programs. In recognition of this coupling of platform and application performance

characteristics, a third portion of the methodology is proposed to merge both per-

formance aspects within a framework in which a hypothesis can be posed and tested

related to these characteristics.

1.2 Motivation

This work is motivated by trends and activities in the high performance computing

field over the last decade. The days of “big iron” parallel platforms are dwindling

as procurement decisions are driven by constrained budgets and managers who lack

a coherent and accurate picture of the relationship of performance to specialized

hardware. Clusters and cluster-like systems are here and will quite likely persist

for the near future. Although the traditional parallel platforms were equivalently

complex by component count and logical structure to modern clusters, they differed

in that nearly all of the components of the system and software stack were provided

by a single source. This source was capable of understanding the interplay between

each component and could provide an interface to the application developer that was

tuned to maximize performance.

4



Chapter 1. Introduction

Clusters of low-cost commodity components have lost this coherent design in the

interest of favoring price over performance. The operating system is developed in-

dependently of the parallel programming support layer. Even worse, this operating

system is not designed for high performance platforms at all. The parallel program-

ming layer, most often in the form of a message passing layer such as MPI, PVM,

or ARMCI, is developed independent of the interconnection network hardware. Ef-

ficient, stable parallel I/O is nearly non-existent. The suite of non-operating system

tools, such as compilers and libraries, are developed by a community concerned with

systems where performance is measured in terms of human interaction and usabil-

ity instead of computational throughput. Finally, and most discouragingly, most

of these components are connected together in an ad-hoc manner using scripting

languages that are best suited to web pages and automation of tasks requiring text

processing capabilities. Rube Goldberg would be proud of the contraption that is the

modern parallel platform, although even he might flinch in the face of the gross lack

of elegance in the engineering and design. The well engineered, elegant platforms

such as novel Cray or IBM architectures are rare and expensive, frequently one (or

few) of a kind. Good engineering has become an exception, no longer the rule, in

the interest of cutting acquisition costs.

Given this picture, it is clear that there are many components that are forced to

interact in ways that they may not have been designed to. They frequently are capa-

ble of such interaction on a purely functional level. Understanding this interaction

with respect to its performance impact, particularly in a large-scale parallel system,

is nearly entirely performed as an ad-hoc set of small scale measurements, feature

specific analysis, each of which are performed independently with little to no cross

pollination of knowledge.

Consider the following scenario. It is no longer uncommon to find parallel plat-

forms composed of thousands of compute nodes, each populated with a small number

5



Chapter 1. Introduction

of processors, a block of memory, one or more interconnection network interfaces,

and an array of other peripherals for I/O and monitoring. Each node also requires

a minimally configured installation of a heavy-weight operating system, most often

a UNIX-derivative that is predominantly developed to target the desktop or web

services domain. Each node is quite capable of achieving reasonable performance for

jobs that remain within the node, but performance of parallel programs requires a

more careful look at the individual compute node and the effect local performance

has on the global set of nodes.

It is widely accepted that the performance of parallel programs that require syn-

chronous interaction between nodes is limited by the slowest node. In many cases,

particularly within programs where the data set grows and changes over time, load

balancing is required to ensure an even distribution of work to processors. Within a

perfectly load balanced program, it is still possible that perturbations to the appli-

cation due to the single node operating system or hardware can have a devastating

effect on performance, as has been recently demonstrated [59]. Any time a local per-

turbation disturbs a process in the parallel program, that process is likely to become

the “slow node”, thus inducing idle time on the other nodes that are interacting

with it while it catches up to them (see Figure 1.1). Since the operating systems

and hardware installations on nodes are independent, then for a fixed period of time,

as the node count increases the probability of a perturbation occurring during that

period of time also increases. Due to the dependence on each node for the overall

performance of the parallel program, rare events become more frequent, and low

overhead interference on single nodes becomes strongly noticeable and intrusive.

In the case cited previously, the root cause of the performance problem was a

misconfigured operating system on compute nodes. The procurement process for

the machine required a great deal of benchmarking and measurement to ensure that

it met the requirements outlined by application developers. Unfortunately, these

6



Chapter 1. Introduction

P1

P2

P3

P4

P5

time

Figure 1.1: Illustration of skewed arrival times at collective operations. Shaded bar
represents time spent at a collective, with P5 reaching it last and causing idle time
on P1 − 4.

benchmarks only probed a strict subset of the performance characteristics of the

machine, and the interference due to the operating system was not detected until

the post-procurement performance tuning period. Furthermore, the application de-

velopers specified their requirements in fairly limited parameters such as bandwidth,

latency, and memory requirements. They had no specification whatsoever regarding

the sensitivity of their application to variations in these and other important factors.

This work proposes a methodology in which the performance measure and re-

quirement set associated with both applications and machines is not limited to simple

scalar values (such as runtime). Furthermore, this work will demonstrate that these

performance characteristic vectors can also be used to perform performance sensi-

tivity studies through simulation, allowing one to not only measure an instance of

performance, but explore how it varies under different, real-world conditions within

a parallel system.

7



Chapter 1. Introduction

1.3 Thesis Outline

This thesis examines the problem of characterizing both parallel platforms and pro-

grams, and describes how these separate descriptions can be unified to explore the

sensitivity of parallel applications to performance dictating parameters. Chapter 2

provides an overview of existing work in this area that has taken place in the past

and continues to the current day. In Chapter 3, the problem of describing machines

is presented by examining the problem of deriving measures and building metrics for

comparison.

At a level of abstraction above the hardware, Chapter 4 discusses tools known

as microbenchmarks that can be used to infer characteristics that cannot be directly

determined from hardware specifications and operating system parameters. The issue

of operating system induced perturbations is discussed as an example of a non-trivial

measure that can be empirically derived.

The work then addresses the problem of examining application sensitivity to these

parameters. In Chapter 5, a trace-driven simulation is introduced. This simulation

uses actual application traces from runs on specific parallel computers as input, and

can be parameterized in order to explore the sensitivity of an application to variations

in performance affecting parameters of the parallel computer.

In Chapter 6, this simulation is used to analyze a few real application codes. It is

parameterized based on the data gathered with the microbenchmark from Chapter 4

and analysis is performed of performance effects due to operating system interference.

Finally, in Chapter 7 the methodology is summarized and we discuss how it can be

applied to enhance performance studies performed with existing tools.

8



Chapter 2

Existing Work

Performance analysis of both computer systems and programs is a very active area

of research, and will continue to be such as long as new systems and programs are

created and proposed. This thesis touches on two areas of performance analysis:

measuring performance characteristics of machines, and applications that run on

these machines.

2.1 Machine performance

It is virtually impossible to discuss sequential and parallel computers without en-

countering comparisons based on hardware performance metrics. These frequently

examine characteristics such as processor clock rates, bus speeds, network latencies

and bandwidths, and memory subsystem capacities and performance. These param-

eters have an unarguable importance in the performance of applications. All parallel

applications are intrinsically built out of phases of sequential execution and commu-

nication of information to storage accessible to one or more participating processing

elements. The characteristics of the machine are important, but not entirely, to

9



Chapter 2. Existing Work

determining the performance of real applications.

2.1.1 Computational performance

All parallel applications at their core require computations to be performed on pro-

cessing elements. Most scientific applications, particularly those in the physical sci-

ences, require floating point computation. The historical metric for measuring per-

formance is to look at the number of floating point operations per second (FLOPS)

that can be achieved on mathematical operations common in scientific codes. This is

predominantly measured through the execution of linear algebra operations and the

fast Fourier transform. The LINPACK benchmark [19, 16] has been a long standing

tool to measure the performance of large scale platforms required to solve large sys-

tems of linear equations. This is arguably one of the most important operations in

codes from physics, chemistry, and engineering. The value of the LINPACK bench-

mark is undisputed in this respect, although its dominance in the field as the main

metric for comparing systems fails to recognize that it is not the sole computational

operation performed on parallel systems. It is interesting to note that, although it

has been long recognized that computer performance evaluation should be performed

in the context of real applications [33], the heavy reliance on idealized benchmarks

such as LINPACK persists, over 40 years later.

In many fields such as plasma physics, signal analysis, and those that involve

problems that can be solved with spectral methods, the fast Fourier transform [14]

is an important operation. Parallel implementations of the FFT algorithm are very

different from typical linear algebra benchmarks, and parallel benchmarking efforts

such as Parkbench [29] include them in their code suite.

Integer performance is often measured, but presented as an aside to floating

point performance. An increasing number of algorithms run on parallel computers

10



Chapter 2. Existing Work

rely on purely integer-based operations. Traditionally, cryptographic and database

applications were the primary source of integer based codes. While these continue

to represent a significant portion of non-floating point computational workloads, an

increasing number of applications from scientific computing are integer-based versus

the traditional focus on floating-point based codes. Bioinformatics algorithms such as

BLAST [2], graph analysis algorithms such as the DARPA HPCS SSCA#2 program

[3], and many others exhibit complex performance behavior with solely integer-based

computations.

2.1.2 Memory performance

Memory performance has traditionally been a key metric in comparing parallel sys-

tems, and was one of the major factors that motivated custom hardware in shared

memory multiprocessors and massively parallel systems. Memory systems typically

operate at speeds significantly slower than the processors that access them, and thus

are a significant bottleneck for all but the smallest and most regularly structured

codes. The introduction of the cache memory [35, 77, 66] in the Atlas and IBM

System/360 Model 85 [38] computer showed that multi-level memory hierarchies can

increase performance a great deal. The unfortunate side effect is that the time re-

quired to access memory is no longer uniform, and achieving the highest performance

possible requires application developers to design their codes to take advantage of

this structure.

Two metrics are important when examining memory performance. These are

bandwidth and latency. Bandwidth determines what quantity of data can be moved

from memory to the processor in a given unit of time. Latency determines the time

required to move a single quantum of data from the memory to the processor.

The STREAM benchmark [41] has been traditionally used to measure the ac-

11



Chapter 2. Existing Work

tual sustainable bandwidth that can be achieved by a wide variety of shared and

distributed memory parallel, uniprocessor, and vector architectures. This band-

width measure assumes regular access patterns and structure that is conducive to

reaching near peak values, unlike the worst-case GUPS benchmark discussed below.

STREAM has been also used to help compute the measure of “balance” that a plat-

form provides, corresponding to the ratio of peak floating point operations to the

peak sustainable memory bandwidth achieved [12]. A balanced machine is capable of

moving data to and from the processor at a rate comparable to the processor speed,

while the memory system within an unbalanced machine cannot keep up with the

processor.

On the other end of the memory performance spectrum, the giga-updates-per-

second (GUPS) benchmark exists to measure the performance of a synthetic kernel

that performs a large number of small size, randomly distributed memory loads

and stores [24]. This benchmark is intended to measure the global bandwidth that

can be achieved within a system for worst-case single-word accesses from the global

memory. This benchmark can also be applied to measure the worst-case memory

latencies that can be expected of a system due to the speed of the memory access

hardware and the structure of the memory hierarchy itself. It must be recognized

that the result it produces represents a value that entangles effects contributed by

the various levels of the memory hierarchy, most often the worst-case in which the

higher performance cache levels are bypassed. To measure those individually, one

would have to create a benchmark that has a memory traversal pattern structured

for the specific hardware being measured. This would require either by explicitly

coding this pattern for specific systems, or attempting to infer it in software in a

manner similar to performance adaptive packages such as the Automatically Tuned

Linear Algebra Subroutines (ATLAS) [76].

12



Chapter 2. Existing Work

2.1.3 Communication performance

The communication fabric that binds disjoint computational elements and memory

blocks together to form a single parallel computer is the final hardware characteristic

discussed here. In modern high-end clusters, this is frequently one feature that can

differentiate one system from another, even if the constituent nodes are identical.

In the past, this aspect of hardware received more attention due to the expense of

large scale interconnection networks. Given limited capacity switching hardware,

a great deal of focus was given to the topology of the interconnection network.

Various hardware systems and algorithmic techniques were created to perform well

if the processors were connected in a high dimensional hypercube, torus, or mesh.

With the proliferation of high performance networks outside the high performance

computing field in areas driven by consumer and business applications, the price

for high capacity, high node count fabrics has dropped. It is quite reasonable to

purchase a full bisection bandwidth fiber switch for over a thousand nodes, making

the interconnection network within a parallel computer essentially fully connected

through novel topologies such as the Clos network [13] provided by modern Myrinet-

based networks [53].

The focus has moved from the performance of exotic topologies and their cor-

responding routing algorithms, to the latency and bandwidth provided by modern

fully-switched networks. The similarity in measuring memory systems and intercon-

nection networks is no coincidence. Given a set of compute nodes, the programmer

is provided not only a set of processors, but a set of distributed regions of memory. A

parallel program performs computations on the individual nodes on both the mem-

ory attached to the node, and data stored within the memory of other nodes. Either

via message passing operations or other remote addressing schemes, each processor

uses the interconnection network to read and write to these distributed memories.

In essence, the interconnection network introduces nothing more than another level

13



Chapter 2. Existing Work

of memory hierarchy to the system. Similar methods to those for measuring tradi-

tional memory system performance can be applied to the interconnection network

for measuring latency, bandwidth, and contention for resources.

2.2 Application performance

The parallel computing community has developed many tools and methods for an-

alyzing the performance of parallel applications. Most often this is motivated by

users finding themselves on specific platforms with a strictly limited allocation of

time and resources. As such, analyzing the performance of an application is very

important if they wish to maximize the utilization of their machine allocation and

produce as many results as possible. The majority of tools in this area require per-

forming real runs of applications, and analyzing the behavior of the application in a

post-mortem fashion to identify regions that can best benefit from performance tun-

ing and algorithmic restructuring. This post-mortem diagnostic method is valuable,

but is based on an iterative approach of performing runs, performing analysis, and

tuning the code. Less frequently, tools provide not only analysis of static run data,

but methods for extrapolating expected parallel performance given either applica-

tion or system level tuning. Little to no work can be found that combines system

benchmarking with application analysis, as presented in this dissertation.

2.2.1 Parallel profiling

The concept of profiling is familiar to most programmers. On a sequential system, the

GNU profiler (gprof) tool is well known and widely used. The program to be tuned

is instrumented to emit data used to build its execution profile, and then executed.

This instrumentation either occurs at compile time or at run time, depending on the

14



Chapter 2. Existing Work

profiling tool and whether or not source code is available to the performance analyst.

After execution, the profiling tool then can report to the user the percentage of time

that was spent in each function call or finer-grained region of code, such as loops.

This will give the programmer some indication of what region of code took the most

time and would benefit most from performance tuning. This process of profiling,

analysis, and tuning is repeated as many times as necessary until either the desired

runtime is reached, or the effect and benefit of further tuning is not justified by the

programming time and effort required.

Parallel profiling takes this one step further and allows the analyst to examine

the amount of time each region of code takes on each processor while taking ac-

count the relationship between each processor with respect to message passing and

synchronization activities. The popular and most mature tools for performing such

parallel profiling activities are discussed here.

Tuning and Analysis Utilities (TAU)

The Tuning and Analysis Utilities (TAU) parallel profiling tool is a mature set of

parallel program performance analysis tools that has been applied on very large

scale platforms [40, 18]. Much of the focus of TAU has been on efficient generation

of parallel program profiles and event traces on a wide variety of architectures. In

addition to profile and trace generation, TAU provides sophisticated data mining

tools for visualization and analysis of the parallel program behavior. This allows

analysts to visually identify load imbalance, “hotspots” where optimization will be

most beneficial, and relative behavior of separate threads and processors. The data

produced by TAU is static and much of the analysis focuses on mining vast amounts

of profile data to present it in many forms. It does not currently attempt to identify

regions of interest to the performance analyst automatically, and performs little

analysis or transformation on the profile data.

15



Chapter 2. Existing Work

Vampir, Upshot

Unlike TAU, tools such as Vampir [75] (now the Intel Trace Toolkit) and Upshot [28]

focus less on the infrastructure for gathering data, but on presenting it to the user

in a reasonable fashion. Furthermore, where profiling tools focus on gathering local

profiles for each parallel processor and relating them, Vampir and Upshot work pri-

marily with data relating to the message passing behavior and processor interactions

that occur within the parallel program. The visualizations they provide for aiding

in analysis focus on the graphical representation of this interaction, which is used in

this thesis work as the message passing graph concept that underlies performance

sensitivity simulations. These tools are primarily used for visualization and data

mining, and require the analyst to make decisions related to performance issues.

Pablo

The Pablo performance analysis environment [60, 61] is similar to TAU in its scope

and goals. Pablo provided a suite of tools for program instrumentation, trace file

formats, and data analysis. Like many performance analysis tools, the focus of Pablo

was on data collection, mining and presentation. The literature on Pablo describes

these tools, and provides information on trace collection and the performance per-

turbation it induces on the program being traced. This perturbation consideration

is applied and discussed in this thesis with respect to the collection of traces used to

drive our Chama analysis tool described in Chapter 5.

Dimemas/Paraver

The Dimemas [4, 25] and Paraver projects from CEBPA (Centro Europeo de Par-

alelismo de Barcelona) provide parallel program tracing, analysis, and simulation

16



Chapter 2. Existing Work

tools for performance analysis of MPI and OpenMP-based parallel programs. This

work is very similar to the work performed here in Chapter 5. In fact, this tool

was explored as a possible vehicle in which to perform sensitivity studies by writing

extensions to the existing Dimemas infrastructure. Unfortunately, the prohibitive

node-locked license made it very difficult to obtain and execute in the cluster en-

vironments used for this work. Furthermore, the closed source nature of the tool

made modification and experimentation with different perturbation techniques very

difficult.

Dimemas primarily focuses on simulations of network effects on message passing

programs, coupled with visualization tools for examining message passing structures

within a parallel program. It does not contain any methods to evaluate the effect

of on-processor, or on-node perturbations such as operating system interference on

parallel program runtime.

Paradyn

The Paradyn suite [47] provides instrumentation, data collection, and analysis tools

for examining the performance characteristics of large node count, potentially long

running parallel jobs. This requires efficient data representation and collection meth-

ods, as a job that executes on thousands of processors for weeks will produce a

tremendous volume of performance data. The “Dyninst” tool was created under

the Paradyn project, and has found application in many contexts, including TAU.

It allows runtime instrumentation of applications, avoiding the need to instrument

source code before compilation. This is desirable in situations where source code is

not available, or compilation requires more time and resources than users wish to

spend.

17



Chapter 2. Existing Work

2.2.2 Hardware behavior

Profiling tools most often present the user with a breakdown of how time is spent

during program execution. This is not the only useful metric for describing the areas

of interest for optimization within a parallel program. Nearly all modern micropro-

cessors found in parallel computers provide what are known as hardware counters.

These counters allow the user to monitor the number of low-level hardware events

that occur over a period of time or range of instructions. These include details such

as cache miss rates, TLB misses, branch prediction unit mis-predicts, pipeline stalls,

and numerical operations completed. Given the performance degradation suffered

when data must be accessed in main memory versus caches closer to the processor, it

is often valuable to know not only what region of code took the most time, but that

which required the most main memory accesses due to cache misses. Similarly, highly

unstructured control flow may result in high numbers of branch prediction failures,

reducing the utilization of the processor pipeline and the corresponding number of

completed instructions per processor cycle.

The Performance API [9] (PAPI) is a mature API for accessing the hardware

performance counters available on nearly all modern CPUs. It makes information

about instruction scheduling (such as branch prediction statistics), cache behavior,

and instruction throughput counts available to profiling tools. PAPI also allows

multiple counters to be measured concurrently if supported by the hardware, allowing

detailed and correlated analysis of multiple aspects of performance to be analyzed

in a single run.

18



Chapter 2. Existing Work

2.3 Methodologies

The recognition that most work in parallel systems and application performance anal-

ysis is ad-hoc at best is not new. Past researchers have sought to bring some sense

of order and scientific discipline to the practice by proposing organized processes

predominantly focused on system characterization and comparison. The practice of

benchmarking new parallel systems, most notably for their placement in the “Top-

500 ranking” [1], is a black art at best. A great deal of effort has been expended in

tweaking and tuning the LINPACK benchmark to achieve maximal performance re-

sults. In the process, the benchmark number fails to capture anything more than the

achieved performance. It does not take into account reliability and reproducibility,

and the time and effort required to perform such tuning. Furthermore, it is not clear

how to optimally run LINPACK on new, novel architectures such as the IBM Cell

processor, BG/L, or Cray MTA. A system with a high rating may require a heroic

amount of effort on the part of each and every application developer to achieve sim-

ilarly high performance on their specific applications. Similarly, a system may score

poorly due to the lack of a proper implementation of the code.

This was recognized in the late 1980s and early 1990s and efforts were started

to bring some discipline to the benchmarking practice. These efforts defined sets

of applications to be tested, and imposed strict requirements on the allowed tuning

activities and the recording of the efforts required to perform them. The goal was to

not only provide a peak performance metric, but a metric of the human factors related

to achieving this performance, in addition to diversifying the set of benchmarks to

provide a wider coverage of the set of codes executed. Although these activities have

yet to show a clear impact (the Top500 rankings of the High Performance LINPACK

code still dominate parallel computer comparison [16]), they mark a move in the

community from ad-hoc comparisons to a more scientific discipline for performance

analysis.

19



Chapter 2. Existing Work

These efforts included application kernels such as the Livermore loops [43], the

NAS Parallel Benchmarks [5], and the Perfect club [7]. Each sought to diversify the

set of applications used for machine benchmarking to better match the workloads

required by various institutions. The Parkbench effort [29, 30] was introduced to

bring together smaller, similar efforts, and define not only a suite of applications

and kernels for benchmarking, but a methodology for executing them and recording

results. The primary purpose of this method was to make it easier for users to

identify a benchmark application most similar to their own, and make more educated

judgments with respect to performance comparison than by relying on LINPACK

alone. Unfortunately, the Parkbench effort appears to have made little impact on

bringing more discipline to machine comparison, as LINPACK persists today as the

primary means by which parallel machines are compared.

20



Chapter 3

Machine characterization

3.1 Metrics and Measures

The need to compare two entities and generate a measure of relative similarity, and

a quantitative assessment of relative quality, requires the definition of appropriate

metrics and measures. This task of measurement and comparison is the basis of

much analysis in systems performance, and drives many large-scale procurement

decisions for acquiring new parallel computing platforms. Unfortunately, the con-

nection between the platforms, the applications that will ultimately run on them,

and the performance characterization benchmarks is ill-defined in the current state

of the art. The connection relies on a loose notion that many scientific applications

share common functionality (such as basic linear algebra operations) and structure.

What is missing is an analysis of these characterization kernels and applications to

determine whether or not they cover a sufficient amount of the space of performance

influencing parameters, and to what degree the kernels themselves overlap in this

respect.

To illustrate the problem of performance characterization, consider the mathe-

21



Chapter 3. Machine characterization

matical notion of a metric versus a measure. Given two entities (in our case, parallel

platforms, applications, or characterization kernels), a metric provides a quantita-

tive distance that can be used to compare, and ultimately understand the relative

relationships between many entities. On the other hand, a measure simply pro-

vides a mapping from the set of measurable entities to the real numbers, with no

necessary requirement that comparisons between these numbers say anything about

the relative difference of the entities. Performance benchmarks are frequently con-

structed to provide measures, but rarely do they allow rigorous comparison between

the measured entities on their own: they are not necessarily metrics.

Consider the following example. Two machines may be measured to have the

same performance on a single simple application, such as a dense matrix-vector

solver (ie, LINPACK), yet vastly different performance on random memory access

applications (such as GUPS). This does not show that either benchmark alone is

insufficient, but that neither is sufficient to fully characterize the space of performance

characteristics that a particular machine exhibits. The dense matrix-vector measure

may simply show that the projection of the vector of performance characteristics by

the benchmark is identical - it does not show that projections via other operators

will also be identical.

This introduces a concept that was used in this work to motivate the choice of

applications used for benchmarking and analysis, and is similar to a proposed method

for measuring productivity in high performance computing environments [67]. Every

machine has a set of characteristic performance parameters that dictate how it will

perform under different workloads. Similarly, applications have a set of performance

parameters that dictate how they will perform on different machines. For discussion’s

sake, let us assume that k unique parameters exist for characterizing a machine.

Therefore each machine can be described as a vector in a k dimensional vector space,

with each individual parameter (component of the vector) corresponding to the basis

22



Chapter 3. Machine characterization

double epsilon = 0.0;

double x[1000];

double tmp;

for (i=1;i<100;i++) {

x = f(x,1000);

tmp = computeEps(x,1000);

epsilon = AllReduce(tmp, MAX);

}

Figure 3.1: A simple kernel that alternates between phases of local computation and
collective communication.

vectors that define the space.

We can further extend this concept of performance characteristics as defining a

basis for a vector space by allowing benchmarks, performance measurement kernels,

and applications, as projection operators that map the full set of components of the

performance vector for a specific machine into a subspace of the overall performance

space. For example, if one of the performance characteristics is the latency of the

interconnection network, then a ping-pong test simply projects the characteristics of

the machine onto the single basis vector that represents latency. A test of this form

measures the time required to send a message of minimal size back and forth be-

tween two processors. By keeping the message size very small, a ping-pong test only

measures the amount of time a single messaging quantum spends in flight between

the two without sensitivity to bandwidth constraints.

More complex benchmarks (although seemingly trivial) perform projections that

are a linear combination of more than one basis vector. Consider a simple benchmark

that performs a collective AllReduce operation between phases of local computation,

as shown in Fig. 3.1.

23



Chapter 3. Machine characterization

This seemingly simple kernel that forms the core of an algorithm such as one

dimensional Gauss-Seidel or Jacobi iteration, touches on at least three performance

characteristics. First, the array x is traversed by the functions f() followed by

computeEps(), which stresses the local memory system. Both functions also are im-

pacted by the floating point performance of the processing elements. The collective

is impacted by interconnect latency (not bandwidth, as it is simply operating on

scalars). Furthermore, the local node operations are impacted by a subtle perfor-

mance characteristics commonly referred to as operating system noise or interference.

During any phase of local computation, the program may be preempted by the op-

erating system due to page faults, TLB misses, daemons, hardware interrupts, or

other user-space tasks. This increases the amount of time required for the program

to perform a fixed quantity of work. Unlike pure CPU floating point performance,

or memory subsystem characteristics, OS interference introduces a new, stochastic

parameter into the system that is subtle and difficult to quantify.

Thus we can see that a simple kernel projects the impact of many components

of system performance into one or more measures. This is most frequently runtime,

although other quantities such as cache miss statistics and instruction mix behavior

are also measured. The key observation is that a projection to a space that is too low

dimensional (such as a scalar) causes a great deal of information to be irretrievably

lost regarding each performance characteristic of the machine and it’s interaction

with the computational kernel. Metrics based on these low-dimensional projections

can be misleading or simply provide little information of interest.

3.2 Performance vectors

Typically a benchmark gives a single scalar, which is a measure of the machine and

benchmark, not necessarily usable as a metric. As such, we consider performance

24



Chapter 3. Machine characterization

quantification as vectors of distinct characteristics. Defining what the elements of

the vectors represent requires examining the aspects of parallel programs where per-

formance analysts have traditionally identified sources of performance sensitivity.

These can be broken down into many characteristics, some of the most common

being:

• Variability in arrival time at collective operations

• Blocking on message passing operations

• Synchronization primitives

• Memory latency and bandwidth

• Floating point and integer performance

• I/O

Instead of measuring scalar values for codes, we instead should measure these

characteristics, and populate a performance vector. The scalar traditionally used,

such as runtime, can be considered the result of a vector norm on these performance

vectors. The HPC Challenge benchmark [17] defines seven benchmark kernels that

step beyond the basic LINPACK measurement. These form an initial attempt by

the HPC community to define benchmark kernels such that a vector description of

machines can be created. Although it is not known to what degree these kernels cover

the full set of performance characteristics, they represent a step in a positive direction

away from traditional single scalar value metrics for machine characterization.

This approach opens up the possibility of novel ways of exploring performance

data to reason about the relationships of applications to the underlying machine,

and similarities between applications themselves. One approach is to apply principal

components analysis (PCA) to the data. The motivation behind PCA is to take the

25



Chapter 3. Machine characterization

high dimensional performance vector data, and identify the components containing

the most variation. By limiting the number of principal components that are con-

sidered, we can reduce the dimensionality of the data onto the performance aspects

that show the greatest diversity in performance.

The use of different benchmark kernels for quantifying performance vectors will

allow comparisons that not only provide scalar differences for comparing machines

(such as peak floating point throughput differences), but allow one to reason about

similarities and differences between machines considering multiple performance di-

mensions. Ideally a set of performance characteristics can be identified that form a

basis for the space of performance metrics that are derived from and covered by a

small set of kernels. The HPC Challenge benchmark suite represents progress in this

direction by the community.

3.3 Operating system perturbations

In Chapter 4, the specific performance parameter related to quantifying operating

system perturbation is discussed. This performance parameter is commonly referred

to as OS perturbation, OS interference, or OS noise. Its basis is in the widespread

use of preemptive time-sharing operating systems for high performance computing

systems, most often some form of UNIX derivative such as IRIX, Linux, or AIX.

This performance characteristic can form part of a larger performance vector to take

into account the preemption characteristics and rates of various platforms. In these

systems, user applications coexist on computers with operating system daemons and

kernel-level processes. These processes and daemons related to operating system

tasks require periodic slices of time on resources shared with the user application.

As such, the user application periodically is preempted for these activities. During

these periods of preemption, the application performs less usable work than a period

26



Chapter 3. Machine characterization

of equal duration in which no preemption occurs.

Operating system interference is a problem because, although largely transparent

on desktop workstations or small processor count jobs, it can have a strong nega-

tive impact on large scale parallel job performance. Parallel applications frequently

require synchronous operations of some form, ranging from basic blocking send and

receive operations, to more complex collective operations involving sets of processes.

If each process in a parallel program performs essentially equivalent amounts of local

work before reaching one of these synchronous calls, then the amount of time spent

idle on each process is small since they will all reach it at approximately the same

time. If the operating system causes one or more processes to be preempted, then

these processes will reach the synchronous region later than processes that were not

preempted. The overall efficiency of the program is thus reduced because the time

spent idle (with no usable work being completed) across the parallel set of processes

is increased.

Operating system interference forms only one element of the performance vector

that we seek to construct to describe a parallel system. Given that the number of

possible components of these vectors is very large, instead of attempting to cover

each with a high level discussion, we instead focus a great deal of attention on the

measurement and quantification of one. This rigor should represent the amount of

attention each and every component of the performance vector deserves.

3.4 Application vectors

Performance vectors are not confined to platforms alone, but can be generated for

applications. Often application performance requirements are discussed in broad

terms, either discussing the sort of operations it relies on (such as collectives), or

presenting an ad-hoc estimate of the granularity of computational work that occurs

27



Chapter 3. Machine characterization

between communication operations. One can make a more rigorous vector description

of an application by analyzing the behavior it exhibits at runtime. The simulator

presented in Chapter 5 can also serve as a statistical analyzer simply as a side effect

of the method used to reconstruct the message-passing graph of the application.

The vector description of an application can not only contain simple metrics such

as the memory requirement or instruction mix, but details such as the proportion of

each type of message-passing operation. For example, an application vector could

contain the number of processors a run was performed on and the percentage of calls

that were MPI Allreduce versus MPI Bcast collectives on each processor. For each,

the vector could also be populated with the mean and variance of the duration every

processor spent blocked in each event type, allowing the vector to capture the load

imbalance experienced by the program in a very rough sense. Examples of these

statistics are provided in Chapter 6 for some of the codes that were examined in the

form of MPI operation mix and average exclusive times spent in each event type.

28



Chapter 4

Microbenchmarking

The concept of a microbenchmark, or synthetic benchmark, for probing specific as-

pects of system performance has existed in the performance analysis literature for

nearly four decades. A program of this form is intended to probe the system in order

to reveal a specific performance characteristic such as bus bandwidth or the cache

structure. Ferrari [21] differentiates between microbenchmarks (which he refers to

as internally driven tools), and external tools that probe the system without con-

suming system resources. A key point that he points out, that motivates much of

the work in this chapter, is that self-interference is impossible to avoid for the in-

ternally driven tool due to it sharing resources with that which it measures. Taking

that into consideration, this chapter presents a carefully constructed and analyzed

microbenchmark for quantitatively measuring operating system perturbations as ob-

served by user-space programs.

This chapter extends the work described in [69] published at the Cluster 2004

conference entitled “Analysis of microbenchmarks for the performance tuning of clus-

ters,” and provides more depth for the description of the microbenchmark code and

aspects of the analysis of the microbenchmark time series data.

29



Chapter 4. MicrobenchmarkingP r o c e s s r u n s w i t h o u t i n t e r r u p t i o nT 0 T d o n e T d o n e + T i n t e r r u p t i o nI d e a lJ i t t e r P r o c e s s I n t e r r u p t i o n P r o c e s s T i m e
Figure 4.1: Interference and how it can slow an application.

4.1 Introduction and Background

Cluster-based supercomputers continue to be a popular high-performance comput-

ing platform, and have recently broken into the large-scale supercomputing realm

previously occupied by custom and traditional parallel architectures. The most im-

mature component of clusters relative to traditional HPC platforms is the compute

node operating system architecture. Until recently, compute nodes were no differ-

ent than workstations in both hardware and software configuration. With minimal

modification to Linux itself, systems such as BProc [27] and OpenMOSIX [11] are

able to eliminate much of the on-node software that is not necessarily used on com-

pute nodes. This second generation of cluster node software architectures eliminates

obvious sources of perturbation: daemons that require resources, unnecessary kernel

code (such as unused modules), and excessive hardware. The primary motivation

for eliminating hardware is one of reliability, but a secondary benefit is that it also

eliminates potential sources of noise due to hardware interrupts.

Noise due to hardware interrupts or other interference can lead to a program

running in a longer time that without. We show a simple situation in Figure 4.1.

In the first case, the program is fine – it starts, runs with the whole CPU, and

ends at the expected time, Tdone. In the second case, some interrupt has occurred,

caused by either hardware or software, and the program completion time is delayed

by the time consumed by the interruption, Tinterruption.

30



Chapter 4. Microbenchmarking

Characterization of single-node performance is vital in understanding the per-

formance of large scale parallel computing platforms, especially clusters. Most non-

trivial parallel programs alternate between phases of disjoint computation on each

processing element, and phases of communication and synchronization involving all

or some of the processors in the system. Ideally each processor participating in a

synchronous operation will reach the operation at the same time as each other partic-

ipant. If this is not the case, each processor that arrives at the operation before others

must wait until the slower processors arrive. This idle time decreases utilization of

the system, and has a negative impact on runtime. This notion that the slowest pro-

cessor dictates the overall performance is well known in parallel computing folklore.

Traditionally this is addressed when examining load balancing to minimize wasted

cycles and overall runtime. We examine this issue because perturbations induced

by factors outside application codes, even those that are themselves perfectly load

balanced, can cause individual processors to be slowed down, thus causing idle and

wasted cycles. As node counts in modern clusters increase into the thousands, the

cumulative effect of even minute perturbations on individual nodes can collectively

result in a tremendous impact on application performance.

The reason for this impact is rooted in an unfortunate combination of large node

counts and independence of perturbation events across nodes. The operating system

on a cluster does not synchronize activities such as daemon wake up, hardware timer

interrupts, and so on. Anectdotal evidence for spontaneous self-synchronization has

been observed, but as a lucky and unintentional side effect of operating system

scheduling on individual nodes. For a single node, the rate of such interrupts can

range from fractional Hz for daemons and kernel tasks, to over 100Hz for hardware

activity. If the only perturbing events occur at a rate of kHz, where k < 1, a single

processor activity clearly achieves a high utilization on the processor. For n nodes,

the likelihood at any given time of a perturbation of at least one node rises to n ∗ k.

31



Chapter 4. Microbenchmarking

Scientific applications have very special characteristics relative to the suite of

applications a general operating system is designed to support. First, consider the

simple uniprocessor case. A simple application such as a 2D grid-based solver requires

long periods of sustained computation on a fixed amount of memory. In a well

written implementation, locality can be leveraged to use caching or vector hardware

to perform long sequences of simple operations on many data elements very quickly.

Caching in particular requires that in order for these long sequences to occur quickly,

the cache remains consistent and does not need to be read again. Similarly, the

processor should not switch contexts and give cycles to other processes. If memory,

TLB, cache, or any other time critical component is corrupted by another process,

there is overhead involved in reloading elements so that the instruction sequence can

complete. If a process is preempted for other activities, there is both time spent

by the other activities and that for context switching. Both are high overhead and

increase the amount of time a given amount of work takes to complete.

Locating sources of interference can be difficult. Once the obvious sources of

interference such as daemons are removed and compute nodes are turned into essen-

tially dedicated computational resources, the investigation begins. Many portions

of the Linux kernel have sufficient performance for general use, but tuning may be

required to minimize the impact of portions such as the scheduler or software in-

terrupts on both compute-heavy and globally synchronous workloads characteristic

of many scientific applications. Furthermore, in distributed systems such as BProc,

there are infrequent but periodic activities that the operating system performs to

ensure that the overall cluster remains functional over time.

A key activity in locating interference is the quality of the measurement tools.

Over the last 10 years researchers have developed several tools to measure interfer-

ence, usually as a set of microbenchmarks [20, 44, 72]. A popular microbenchmark

is the ‘fixed work quantum’ (FWQ) benchmark, in which a program reads the time,

32



Chapter 4. Microbenchmarking

performs a fixed amount of work, reads the time again, and saves the delta of elapsed

wall-clock time. The FWQ has shown its value several times for determining that

interference exists.

As it happens, the FWQ benchmark has limitations. It fails to take into account

important fundamentals of sampling theory [57, 56], and it can easily lead to mis-

leading conclusions. For example, a common analysis technique is to look at the

variance of the time it takes to perform the work. On a saturated processor the

variance measure will show no interference at all – it is not possible to distinguish

between a very slow processor and one with no interference. This is discussed in

detail in Section 4.7.

Finally, and most importantly, the data output of FWQ is unusable with many

popular techniques, such as the Fourier transform and periodogram analysis [8],

due to the fact that samples are taken every quantum of work. Reconstructing

the amount of work performed as a function of time is very difficult, and requires

assumptions about the distribution of work over the sampled time interval that are

unverifiable. As such, it is difficult to make statements about activities in the system

in either the time or frequency domain given the lack of temporal data.

In this chapter we discuss the flaws of FWQ benchmark, and provide a new mi-

crobenchmark, fixed time quantum, or FTQ, which yields far more meaningful results.

We then show some of the results from FTQ and how it can be used for frequency

domain analysis of interference. Since many of the causes of interference are periodic

in nature, frequency domain analysis can point to a root cause of interference.

This work is motivated by the following condition. We examine the amount of

work a program is able to do by periodically sampling the work it has achieved. The

clock we use is accurate enough to characterize many different phenomena in both

the operating system and the hardware. The microbenchmark we have developed

33



Chapter 4. Microbenchmarking

guarantees that we adhere to good practice in that our sample intervals are fixed

in duration, occurring at periodic intervals, and that the samples are taken on well-

defined time boundaries. We can measure both utilization as percent-of-peak and

interference. Preemption of processes and inefficient cache usage cause a lower uti-

lization of a processor for a given workload. Our goal is to increase (not necessarily

optimally) the utilization achieved by applications by tuning the operating system

to reduce high impact interference and overhead.

We present our measurement and benchmarking methodology, experimental

setup, data analysis, and preliminary conclusions. The benchmark this work is based

on is detailed in Sections 4.2 through 4.5. We provide a detailed description of the

experimental setup (both software and hardware) and process (how and when mea-

surements were taken) in Section 4.6. Finally, Section 4.7 provides a basic overview

of the analysis techniques we have and are continuing to investigate to identify fea-

tures in the raw benchmark output that are related to noise sources. We also show

data resulting from this study that illustrates the relevance of this work.

4.2 Microbenchmarks

In this section, we begin with a discussion of timers that are used for reporting timing

data for microbenchmarks. We then discuss an existing, widely used microbenchmark

based on timing fixed workloads and the flaws inherent in its design. Given these

flaws, we present a microbenchmark that overcomes these flaws by measuring work

completed in a fixed quantum of time.

34



Chapter 4. Microbenchmarking

4.2.1 A brief discussion of time

Before we discuss microbenchmarks that use timers, we need to discuss timers. The

most common timer that has been used to implement benchmarks of this sort is

gettimeofday().

Consider an inherent limitation of software timers. If t units of real time elapse

from some measurement t0 and its successor t1, we have to assume that there is some

small error ǫ that forces

t = (t1 − t0) + ǫ (4.1)

If we wish to derive information about the distribution of the interval lengths in

a series of time samples, we must minimize or eliminate ǫ by carefully choosing the

readtimer() implementation. Our benchmark code currently uses a processor tick-

based timing function, which is known to be accurate to within a sub-nanosecond

resolution. Many benchmarks that are similar to this one use the more common

gettimeofday() function from C. That timer has a higher amount of variance and

a lower precision than counting raw processor ticks, making it difficult to assess the

effect of fine-grain hardware or operating system activities.

Another consideration is the Nyquist frequency and sampling theorem. In

sampling-based systems, the Nyquist frequency is twice the highest frequency which

can sensibly be measured for a given sampling rate. The sampling theorem states

that reconstruction of a band-limited signal (i.e., the power spectrum for frequencies

ω > B is zero), one must sample at a rate ωsample ≥ 2B. If ωsample = ωNyquist = 2B,

the signal is said to be Nyquist sampled. In a system with a 2GHz clock, to fully

reconstruct a signal band-limited to 0 ≤ ω ≤ 200Hz, sampling at a Nyquist frequency

of 400Hz is achievable with the high resolution timers. If a microbenchmark uses

the gettimeofday() clock which runs at 100Hz, then we can only really talk about

35



Chapter 4. Microbenchmarking

signals of 50Hz or less. High resolution timers driven by the processor clock can

support sampling with a Nyquist frequency of nearly 1GHz. As such, they allow

microbenchmarks to detect perturbations occurring at realistic frequencies of 100-

200Hz, or interrupts occurring at several KHz.

Most modern processors provide some mechanism to measure processor ticks

for high resolution timing applications. The Pentium, PowerPC, AMD Athlon,

Sparc, Alpha, and MIPS processor families all have provided cycle-based counters

for performance analysis for many years. For robust performance analysis and mea-

surement, one should not use counters with poor precision and accuracy such as

gettimeofday(). One cannot assume that the underlying implementation uses high-

precision processor timers, so it should simply be avoided. In our experiments, we use

the Pentium Time Stamp Counter (TSC). Furthermore, many timers provided for

libraries such as MPI (e.g., MPI Wtime()) use gettimeofday(). Understanding the

capabilities and limitations of the available timers is vital to reaching meaningful and

sound conclusions from time measurements. It should be noted that the FFTW [22]

package includes a self-contained header file (cycle.h) that can be used to supply

cycle-accurate timer access on a wide variety of architectures and operating systems.

4.2.2 The Fixed Work Quantum (FWQ) microbenchmark

The FWQ benchmark is used extensively in the community. It measures the amount

of time required to perform a fixed amount of work, where each unit of work is either

a memory reference, floating point, or integer arithmetic operation. The code can

be summarized in pseudocode as shown in Fig. 4.2.

Although trivial at first glance, there are features of this that must be understood

to properly interpret data. First, to preserve the raw data, we must store it in

memory. Given that n is assumed to be significantly larger than a cache line size,

36



Chapter 4. Microbenchmarking

for i=1 to n do

timestamp = readtimer()

timeseries[i] = timestamp

for (j=1;j<workcount;j++)

operation

end

end

Figure 4.2: Pseudocode for the Fixed Work Quantum (FWQ) microbenchmark.

s 0 s 1 s 2 s 3 T i m e
w o r k / u n i t t i m e1

0
Figure 4.3: An example of three samples of the FWQ benchmark.

we will see some caching effects when the index addresses a location not located

in cache close to the processor. Modern systems with predictive prefetching and

other hardware optimizations will be able to take advantage of the simplicity of the

workload to hide these effects, but in general they will be present to some degree.

For high performance nodes, with complex sources of interference, the FWQ

benchmark does not work well at all. It will provide some indication of interference.

We have seen that it is just as likely to provide no indication when interference is

maximized and uniformly distributed over the sampling period.

37



Chapter 4. Microbenchmarking

Finally, there may be a huge amount of interference, which the benchmark might

reveal in some gross sense, but the data will not reveal the details. This is true

regardless of the quality of the timer used. The more interference there is in the

system, the more interference in the benchmark and the more variance in the actual

timestamps. The sample intervals will thus be of variable width and variable starting

point. They are useless for any type of signal processing. This is illustrated in Fig. 4.3

where three samples are taken of a fixed workload. The fixed workload corresponds

to the area of the rectangle over the time period required for the fixed amount of

work to complete. The FWQ benchmark only dictates this constant amount of work

with no information regarding the distribution of this work over fixed width time

intervals.

The data, rather than revealing variance, is a mirror of the variance of the system.

It is as though the system were sampling noise instead of information. Here we see

a fundamental flaw in the fixed work quantum benchmark.

4.2.3 The Fixed Time Quantum (FTQ) microbenchmark

In response to the shortcomings of the FWQ benchmark we developed the fixed time

quantum (FTQ) benchmark. FTQ is well-behaved in the way it samples and hence

can be used for frequency- and time-domain analysis. We show the inner loop that

performs the sampling in Fig. 4.4.

The basic operation is simple. The loop will count work done until it reaches a

fixed end-point in time. It then records the starting point of the loop and the amount

of work that was done.

This microbenchmark measures work per unit of time, with a fixed unit of time,

ending at a periodic interval. It does everything right that the other microbenchmark

does wrong. The data from this benchmark can hence be used with such tools as

38



Chapter 4. Microbenchmarking

1 terminal = 1 << 21;

2

3 while (!endloop) {

4 last = readtimer();

5 endinterval = (last + terminal) & (~(terminal-1));

6

7 for(now = last, count = 0; now < endinterval;) {

8 count += work_unit_result();

9 now = readtimer();

10 }

11

12 totalcount[(done)*2] = last;

13 totalcount[(done)*2+1] = count;

14 done++;

15 if (done > dototalcount)

16 endloop = true;

17 }

Figure 4.4: Pseudocode for the Fixed Time Quantum (FTQ) microbenchmark.

the Fourier transform and formal time series analysis methods.

The difference between measuring work per unit time versus time per unit work

is the key to the analysis being able to accurately identify periodic features in the

data. Periodicity of interference is measured in cycles per unit time, most commonly

cycles per second (Hz). Periodicity in the FWQ benchmark data is cycles per unit

work, which is very difficult to correlate with activities that are periodic in time. We

briefly looked at methods for interpolating time per unit work data into work per

unit time, but gross assumptions have to be made about the distribution of work

over the measured time period for each sample. Our desire to use tested techniques

from the signal processing and spectral analysis fields led us to find a way to sample

the system in a domain that those methods are well defined over: fixed time interval

39



Chapter 4. Microbenchmarking

sampling.

FTQ is specifically constructed to ensure well disciplined sampling is performed,

making not only statistical analysis possible, but opening the door for more sophis-

ticated time series and spectral techniques to be applied to the data. The lack of

proper sampling in previous, similar microbenchmarking efforts, makes such analysis

mathematically difficult, or more often, impossible.

The code presented in Fig. 4.4 is structured to illustrate the algorithmic structure

required to perform the disciplined sampling that we sought to present. The core

concept is to perform many units of computational work that required significantly

less time per unit than the desired sampling interval. By checking a high resolution

timer at the end of each work unit, we can attempt to make samples begin and end

on time boundaries that are within small error bars of the desired sampling interval.

The subtle detail is that, due to the perturbations that FTQ is actually attempting

to measure, it is entirely possible that the microbenchmark is perturbed at the end of

a sampling interval, making a sample extend farther than desired into the following

interval. A simple computation of the end of the subsequent sample is required to

compensate for this error in order to make future samples obey the same sampling

time axis as those prior to the perturbation.

In the remainder of this chapter, we examine other important aspects of the

benchmark in order to tune it to continue to obey proper sampling practices, while

making operating system or hardware induced perturbations clear and easily exposed

within the data. We must define the work that we wish to observe being perturbed

and understand the impact of its structure with and without the presence of per-

turbations on the resulting sample sequences. We will also present details regarding

techniques for FTQ data analysis.

40



Chapter 4. Microbenchmarking

4.3 FTQ Sampling

We designed the FTQ benchmark to overcome issues in other benchmarking meth-

ods that sampled the amount of time required to perform a fixed quantum of work.

Sampling to examine temporal events generally requires that the sequence of sam-

ples represent measurements of some quantity over a fixed time interval known as

the sampling interval. The sampling interval must be kept reasonably consistent in

length for each sample in order to infer temporal features of the system being sam-

pled. When the sampling interval is defined by a fixed quantum of work, with the

samples themselves representing the time required to complete the work quantum,

the regularity of the sampling intervals with respect to time is lost. FTQ fixes this by

enforcing a strict time-based sampling interval, and measuring the amount of work

that can be achieved in that interval.

The method by which FTQ fixes the time interval is subtle due to the fact that the

microbenchmark is a self sampling system that must not only measure the quantity

that is being sampled (work), but also monitor the sampling time so as to determine

when a sample has been completed and another is to be started. FTQ achieves this

in the following manner, and relies on the presence of a timer that has a resolution

significantly higher than the desired sampling interval length. In a modern micro-

processor, high-resolution timers are available that are cycle-accurate, or work at a

time resolution on a similar scale as the cycle timings. Consider a 2GHz CPU, which

has a cycle time of 2 ∗ 10−9 seconds, or 0.5ns. If we wish to sample at intervals of

approximately 1ms, then 2,000,000 cycles will occur between samples. How do we

achieve this in FTQ? Lines 1 and 5 in the code shown in Fig. 4.4 are the key.

Assuming that we wish to sample at approximately 1ms intervals, corresponding

to 2,000,000 cycles, we recognize that this is approximately 221 = 2,097,152. Dur-

ing each sample interval only the lower 21 bits of the timer value will change. As

41



Chapter 4. Microbenchmarking

soon as the 22nd bit changes value, we know that 221 cycles have occurred, and a

new sampling interval has started. The first line of the FTQ code creates a binary

integer, terminal, with a single one bit set in the 22nd bit position, representing

the sampling interval. The fifth line is required to take the time at which a sample

starts, and determine the timer value that will be considered to be the end of the

current sampling interval.

On this line of code, two important operations are performed. On the previ-

ous line, the current value of the timer has been read into the variable last. The

sub-expression last + terminal computes the value of the timer that is precisely

terminal timer units in the future from the time represented by last. The second

sub-expression is required to enforce a strict sampling boundary for all samples, re-

gardless of the value of last where a sample starts. This is to deal with potential

perturbations that will cause a sample to start at some point inside the desired sam-

pling interval. This subexpression, ∼(terminal-1), represents all bits at positions

equal to or greater than the exponent in the sampling interval. terminal-1 contains

bits set in positions 21 and below, so the bitwise NOT sets all bits in positions 22 and

above to one. The combination of the sub-expressions with a bit-wise AND opera-

tion creates a value stored in endinterval that represents the end of the sampling

interval that is on a strict sampling interval that ends no more than 221 timer units

in the future.

The reason this is performed instead of simply setting

endinterval = last + terminal is that it is inevitable that the value of last does

not fall on a clean time value with all lower 21 bits set to zero. Once a sample has

been taken and the loop between lines 7 and 10 has exited when the timer has hit

or exceeded one of these clean sample end times, there are operations that occur

that store data and check to see if more samples are required. By the time the outer

loop reaches line 4 again, the timer is no longer at the value it had on line 9 in

42



Chapter 4. Microbenchmarking

the most recent sample. In fact, it is entirely possible that a perturbation due to

process preemption during execution of lines 11 through 16, and the loop test on

line 3, resulting in their execution taking more than 221 timer units, thus making it

necessary to freshly sample the timer on line 4, and re-compute the end time for the

next sample based on this current value.

This has two side effects. The first is highly desirable. Each sample is guaranteed

to span a sampling interval that is some multiple of 221 timer units plus some δ < 221.

Ideally this multiple is one and δ ≈ 0. In the presence of noise though, the second

side effect is possible, where this multiple has a value of 1 or more. In this case, there

may exist samples that have intervals that exceed the desired interval. Fortunately,

these are not only dealt with as they occur so as to not pollute subsequent samples,

but by saving the timer values in addition to the amount of work performed (line 8),

they are detectable and can be dealt with cleanly in subsequent analysis of the raw

data.

By performing the operations implemented on line 1 and 5 in the code, FTQ

achieves a regular temporal sampling pattern, and yields data that not only rep-

resents a clean time series of work-quanta per sample, but a time series of sample

boundary times that can be used to rectify perturbations to the FTQ self-sampling

scheme.

4.4 The FTQ work quantum

In this section, the FTQ code shown in Fig. 4.4 is examined focusing on line 8. Con-

sider the two time series in Fig. 4.5. These were taken on an IBM X41 laptop running

Linux before the operating system init process has started daemon processes. The

FTQ used to probe the system in the case on the left-hand side used a unit of work

that consisted of a single integer increment operation, count++.

43



Chapter 4. Microbenchmarking

1 2 3 4 5

x 10
4

0

5000

10000

15000

FTQ with fine work granularity

Sample number

W
or

k

1 2 3 4 5

x 10
4

0

5000

10000

15000

FTQ with coarse work granularity

Sample number

W
or

k

Figure 4.5: FTQ data taken at boot time. Left plot based on fine grained work
quantum, right plot based on coarse work quantum.

for (k=0;k<ITERCOUNT;k++)

count++;

for (k=0;k<(ITERCOUNT-1);k++)

count--;

Figure 4.6: A coarser FTQ sampling work quantum that can be unrolled to
(ITERCOUNT*2)-1 integer operations.

On the right-hand side of Fig. 4.5, we show the FTQ time series at the same point

during booting, but with a coarser work quantum. This work quantum consists of a

sequence of integer increment and decrement operations that have the same overall

effect on the count variable as illustrated in Fig. 4.6. In the case shown, the value

of ITERCOUNT is 32 with the loops completely unrolled, yielding a work quantum

composed of 63 integer operations.

In this example, operating system daemons and other processes have been re-

moved from the experimental setup, and the data shows FTQ as the sole process

running on the node aside from the operating system kernel. The data is shown on

44



Chapter 4. Microbenchmarking

an identical work axis to illustrate that the effect of increasing the work quantum

granularity reduces variance, but also reduces the number of samples that can be

achieved over a single sample period. In this case the sample period corresponded

with 220 processor cycles in both cases. We will now examine the basis for the differ-

ence in the data observed with varying work quanta, and the reason why this must

be considered in performing experiments to remove low-level hardware effects that

are not of interest in the study.

4.4.1 Work unit granularity effects

The effect due to the granularity of the FTQ sampling work unit is clear from the

data, and second in importance only to the algorithmic structure that enforces strict

sampling boundaries. Tuning the granularity of this workload is dependent on under-

standing what causes the variations in samples due to the granularity, and finding the

best granularity for the platform being examined. The root of the difficulty in under-

standing the expected behavior of the code versus what is observed is the underlying

architecture. It is impossible to expect a modern microprocessor to execute code in

precisely the order in which it is specified in the presence of out-of-order execution

methods, branch-prediction and speculative execution, and pipelining. Amazingly

enough, pipelined architectures, although not realized seriously in hardware until the

IBM STRETCH and CDC 6600, were first alluded to (although indirectly) in the

work of Burks, Goldstine, and von Neumann nearly 60 years ago [10].

Consider the simple, fine grain work unit where a single counter is incremented.

Embedded within the larger sampling loop, the majority of the instructions that

occur during each sample are actually related to timer maintenance, sample interval

adjustments, and data storage. This code is largely branch oriented, requires writing

to L1 data cache (at best), and requires computations for conditional operations.

45



Chapter 4. Microbenchmarking

int x = 66;

int endloop = 0;

while (endloop = 0) {

x += 33; // work unit

if (x > 777)

endloop = 1;

}

Figure 4.7: C code implementing an analogue of the coarsened FTQ work unit.

On the other hand, the work unit is code that, in our current investigations, should

be solely using functional units operating on data that can reside inside registers,

to remove the performance effects of the memory subsystem and, potentially, the

speculative execution units within the processor.

As the granularity of the work unit is increased, the proportion of work in-

structions to sampling instructions moves work instructions to the majority of those

present in a single sample, making the perturbations due to process preemption more

obvious and not overwhelmed by CPU and memory related effects of the process on

itself.

Consider a very simple portion of code that embodies the structure of the FTQ

sampling loop with the work unit indicated by a comment, shown in Fig. 4.7.

On the PowerPC G4 microprocessor, GCC emits 3 lines of assembly to implement

the work unit, while 14 lines of assembly are required for the work unit embedded in

the simple sampling loop. This is shown in Fig. 4.8. Note that lines corresponding

to labels are left out of the line count. The unusual constants for the work increment

versus stopping criteria are intended to make the corresponding assembly statements

easily identifiable.

46



Chapter 4. Microbenchmarking

//

// Work unit alone

//

lwz r2,28(r30)

addi r0,r2,33

stw r0,28(r30)

//

// Work unit embedded in sampling loop

//

b L7

L3:

lwz r2,28(r30)

addi r0,r2,33

stw r0,28(r30)

lwz r0,28(r30)

cmpwi cr7,r0,777

ble cr7,L2

li r0,1

stw r0,24(r30)

L2:

L7:

li r0,0

stw r0,24(r30)

lwz r0,24(r30)

cmpwi cr7,r0,0

bne cr7,L3

Figure 4.8: Unoptimized PowerPC assembly code for C code shown in fig. 4.7 as
generated by GCC 4.0.

47



Chapter 4. Microbenchmarking

This implies that 11
14

, or 78.6% of the instructions executed for each sample are

not directly related to the work unit itself. In the actual FTQ code, with the simple

count++ work unit, the proportion of non-work instructions is far higher. Clearly

the loops in Fig. 4.6 are trivially unrolled to straight-line code with no control flow

structure, thus it represents a viable coarse grained work quantum. It can be tuned

by changing the value of ITERCOUNT at compilation time to achieve the desired pro-

portion of work to non-work related instructions per sample.

4.5 Self-perturbations of FTQ

Clearly the structure of FTQ itself induces perturbations that appear in the FTQ

samples, and must be accounted for when analyzing the data. We must be able to

understand these self-induced perturbations so that they can be recognized in the

data to differentiate their effects from those that we are actually looking for, such

as operating system or hardware interrupt driven process preemption. A cursory

examination of the FTQ pseudo-code from listing 4.4 reveals that, in addition to

the loop structure and work unit, there is code for storing samples for later storage.

Performing I/O to disk or other non-volatile storage during the core of FTQ is

obviously undesirable, thus the data is stored in memory until the sampling has

completed at which time it can be saved without impacting the sampled data itself.

As FTQ becomes complete in our description, we should consider graphically the

activity that occurs during a single sample interval in order to understand what pre-

cise set of activities (and possible self perturbations) are included in each and every

sample. This is illustrated in Fig. 4.5. A single sample contains multiple timer reads,

work unit executions, end interval adjustments, and two writes to sample sequence

storage. All of these other than the writes to sample storage can be considered to

be operations solely on data stored in CPU registers, and the overall instruction

48



Chapter 4. MicrobenchmarkingT i m e E n da d j . W o r k T i m e L o o pC h e c k +B r a n c h W r i t ed u r a t i o n W r i t e w o r ks i z e S . L o o pC + B
Figure 4.9: Activity of FTQ during a single sample

stream can be considered sufficiently small such that its execution does not induce

L1 instruction cache misses. To validate this, we show cache miss statistics for the

full FTQ program versus the main sampling loop in Chapter 6.

4.6 Experimental Methodology

Accurate benchmarking is a difficult process, and frequently conclusions that are

reached are not as strong as they could be due to under-specified and poorly con-

trolled experimental conditions. This section discusses the environment in which

experiments with FTQ were conducted in the interest of making similar experiments

easier for others to execute and compare. We also point out potential variables

that are not currently controlled during the experiment, and must be considered in

whatever conclusions are drawn from the data.

4.6.1 Hardware and software configuration

The objective of the experiment is as follows. Given a compute node, evaluate the

behavior of a fixed benchmark in the presence of different operating system environ-

ments. Identical binaries are used regardless of the operating system configuration.

The hardware remains constant - no devices are to be removed or added. In cases

where devices are unnecessary, such as network-based booting of nodes, the drives

required for other operating systems were left in place and enabled. A later experi-

49



Chapter 4. Microbenchmarking

ment will then test whether or not unused devices being removed has any influence

on the outcome of the benchmark results. In this chapter, the data we present was

gathered on a single operating system configuration from an existing BProc-based

cluster node. We are now at the point where the benchmark is tuned and understood

to the point where we can begin to do cross-operating system comparisons.

The benchmark code itself is described in detail in Section 4.2. Before running

the benchmark, the compute nodes are rebooted and the benchmark is immediately

executed on a fresh node. The code will be executed for an identical sampling period,

and results will be returned to the front-end node when the code has completed. To

eliminate artifacts in the data due to poor timer quality and accuracy, we chose to

measure durations in terms of processor ticks, using the Pentium TSC. The TSC is

a cycle counter, implemented as a register, and is hence accurate to within several

hundred picoseconds. This accuracy is in stark contrast to the time of day clock,

which is only accurate to several tens of milliseconds.

The kernel on the compute nodes is the Linux SMP kernel version 2.4.25 patched

to include BProc. The compute node is composed of a dual processor motherboard

with 2.20Ghz Intel Xeon CPUs.

Another variable to consider is the actual code generated by the compiler versus

that in the benchmark C code. Careful use of volatiles can ensure that no optimiza-

tion occurs in critical segments. Also, for each run, optimization settings must be the

same. All of the code discussed in this chapter was compiled with all optimization

options turned off.

4.6.2 Processor scheduling issues

The hardware configuration used in this experiment is an unmodified node from a

moderate-scale (128 node) cluster. As such, the node was configured with both CPUs

50



Chapter 4. Microbenchmarking

active on boot. Without the ability to set processor affinity for specific processes,

it currently is not possible to guarantee that for a given run of the benchmark the

execution occurs completely on a single processor. If the code is scheduled to the

other processor during execution, we expect to see a performance hit due to cache

effects, internal scheduling within the processor (instruction level), and other related

issues. We hope that instruction level issues within the CPU occur fast enough to be

beyond the granularity of the timer we are using, but the current work here does not

quantify or take this into account. We also would like to run similar experiments with

the second CPU disabled at boot time to explore the effect of multiple processors.

4.6.3 Generating a baseline measurement

It is not possible to avoid system-related artifacts in the FTQ data stream, such

as cache activity and hardware interrupts (such as clocks). Fortunately, these are

present regardless of the operating system configuration, thus it is possible to derive

a baseline measurement of the system itself. Using this baseline, we can then have

some confidence of decoupling the system-generated noise from that induced by the

operating system. How to measure this baseline though is non-trivial. We propose

two methods, one of which is used in this chapter to generate results, while the other

gives the most “raw” picture of the machine being benchmarked.

The first method, that is used here, requires only an operating system that is

capable of booting a custom init program. The scripts used to build this are inspired

by those used by the “bootchart” project that attempts to profile the booting process

of various operating systems. The key to this method is that the init process is the

first process started when the kernel boots. As such, a process started in its place

will have a guarantee that no other processes will be competing for resources, thus

the only perturbations at that time are due to the hardware and basic kernel itself.

51



Chapter 4. Microbenchmarking

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

1000

2000

3000

4000

5000

Sample number

W
or

k 
un

its

Boot time measurement

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1000

2000

3000

4000

5000

Sample number

W
or

k 
un

its

Post boot measurement

Figure 4.10: FTQ raw data at boot and postboot sampling times.

The second method allows an even lower-level measurement to be made, ensuring

that the operating system kernel, in addition to all processes, are non-existent during

the measurement. In this case, we boot the machine directly into the microbench-

mark, instead of bootstrapping the microbenchmark with a full operating system.

This provides the cleanest measurement of the system, but can result in settings to

devices being different than those present when an operating system is booted. This

can easily be accomplished using LinuxBIOS [49] to boot the benchmark.

In this chapter, we show results using the first method. Fig. 4.10 shows the

results of running FTQ at boot time, followed by an identical run after the system

has booted. The system used for the test was an IBM X24 laptop running Debian

Linux version 3.1 with the 2.6.11 kernel patched with perfctrs to allow for profiling

of low level hardware behavior. The post-boot FTQ measurements were taken with

the GDM display manager started, but without a login into the system under the

graphical desktop software such as GNOME. The FTQ work unit in this case was

composed of 25 integer arithmetic operations (13 increment, 12 decrement).

In addition to the raw data being clearly cleaner at boot time, we can also see

52



Chapter 4. Microbenchmarking

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Quefrency (s)

A
m

pl
itu

de

 

 
Cepstrum

Figure 4.11: FTQ cepstrum at boot time

that the periodic components of the frequency spectrum of each data set has become

more diverse after booting. In Fig. 4.11, we see the cepstrum during boot time, while

Fig. 4.12 shows the cepstrum once booting has completed and all daemons and other

processes have started.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

1400

Quefrency (s)

A
m

pl
itu

de

 

 
Cepstrum

Figure 4.12: FTQ cepstrum post boot

53



Chapter 4. Microbenchmarking

4.7 FTQ Data Analysis

The analysis phase of this investigation is performed with raw data from the FTQ

microbenchmark as described earlier. Qualitative analysis of the data makes it clear

that simple visualizations (such as scatterplots) reveal structure and pattern in the

data, versus what could appear to be random or nearly featureless results. Unfor-

tunately, qualitative techniques are only able to state that there are in fact features

in the data that are of interest. The goal is to then quantitatively identify these

features by any of a wide variety of techniques.

The first techniques we will discuss are basic statistical methods for analyzing

time-series data. These are necessary to answer important questions that impact the

choice of more sophisticated methods, such as whether or not the series are stationary

or if correlations can be found in the series at different time scales. Calculation of

metrics such as the mean and variance are necessary to understand the distribution

of measurements. Unfortunately, basic statistics and plots (such as histograms)

have an intrinsic problem due to discarding of temporal relationships in the raw

data points. Two very different time series (one with periodicity, one without) can

yield identical sample statistics (mean, variance) and histogram plots. As such,

we have and continue to explore more sophisticated techniques that take this into

account. To illustrate the little amount of information contained in simple techniques

such as histogram analysis, consider Fig. 4.13 showing a histogram of the first-order

differenced FTQ data discussed in detail later. As we can see, most of the data

indicates no perturbations between samples, with the majority of samples containing

only a small perturbation, and very few outliers. Furthermore, as we will see later,

this plot contains no indication of the rich structure of the data in the frequency

domain.

Considering that kernel bookkeeping, system heartbeat daemons, and hardware

54



Chapter 4. Microbenchmarking

Figure 4.13: Histogram of first-order differenced FTQ data.

interrupt timers are all periodic in nature, we have been exploring the use of spectral

methods to extract periodic signals in the data. This work is still in the exploratory

stage and no concrete algorithms have been created that are able to, given a raw

benchmark output time-series, provide a set of frequency components that represent

periodic interference due to software and hardware.

4.7.1 Results

Fig. 4.14 presents the raw data produced using the FTQ benchmark. The data

contains a clear peak-workload at 18077 units of work, with a number of samples

that performed less units of work in the fixed sampling interval. The samples are

predominantly near or at the peak workload, as the mean of the data is 18072.6 units

of work, with a standard deviation of 39.16 units over 100000 samples. Many of the

non-peak data points show an obvious periodicity, and this motivates our exploration

of spectral methods next.

55



Chapter 4. Microbenchmarking

Figure 4.14: Plot of raw data for the FTQ benchmark.

4.7.2 Identifying periodicity

Our original and primary goal remains to identify noise in the system due to periodic

activities that are not part of user application code. Theoreticians and practitioners

in time series analysis have attacked this problem for many years for problems ranging

from population dynamics to sunspot cycles in solar data. Although their techniques

are far from perfect (consider the complexity of stock market or climate data), for

simple systems such as ours, they are quite capable. The basis of our current work

is examining features in the frequency spectra of the sampled data using the discrete

Fourier transform. A deep explanation of this technique is outside the context of

this paper, but the main idea behind it is that most signals can be approximated

by composing a set of sinusoidal signals with varying frequencies and magnitudes

corresponding to the periodic features of the original signal. More information can

be found in [57] and [56].

Consider the sequence of samples shown in Fig. 4.14. For ease of analysis, first

order differencing of the data can produce a zero-mean stationary sample sequence

Ŝ from the original sequence of N samples without loss of frequency-domain infor-

56



Chapter 4. Microbenchmarking

Figure 4.15: Plot of data for the FTQ benchmark after first-order differencing.

mation by defining:

ŝi ∈ Ŝ = si − si−1 , i = 2 ... N , si, si−1 ∈ S (4.2)

The resulting sequence Ŝ is shown in Fig. 4.15. Using the Mathematica Fourier

function, we produced the spectrum shown in Fig. 4.16 based on 2000 consecutive

samples.

As we can plainly see, the frequency spectrum contains a small number of obvious

dominant frequency components. In the future we would like to perform experiments

to isolate these periodic sources of noise and correlate them with hardware or op-

erating system sources. It is nontrivial to immediately decide what is causing each

instance of noise by simply examining the dominant spectral components. The mi-

crobenchmark has an upper bound on the highest frequency signal it can reliably

measure. Features that are at or above this limit may appear aliased in the measured

data set, making it difficult to distinguish them from reasonable lower frequency

sources.

57



Chapter 4. Microbenchmarking

Figure 4.16: Plot of the output from Mathematica Fourier[] function for 2000
consecutive samples.

A set of experiments can be performed where a single node is configured, indi-

vidual software and hardware components removed, and measurements taken of the

interference in the absence of one or more different components. Each modification

of the node would allow the spectrum from the modified configuration to be com-

pared to the original, fully configured node, making it possible to identify which

spectral components (if any) disappear or change when the component is removed.

These spectral components can then be correlated with specific parts of the machine

hardware or software configuration.

Once we do this work, we will be able to relate the magnitude of frequency

components in this graph to their impact on the application, for example we should

be able to state that a frequency component that is only a few dB above the noise

floor will have little impact, whereas one that is 20dB over the noise floor may have

larger impact. For the first time, we can sample a system, process it using signal

processing techniques, and draw conclusions directly from the data.

58



Chapter 4. Microbenchmarking

4.7.3 Statistical ambiguity

We have already stated that basic statistics, such as the mean and variance, can

be misleading or devoid of information when the source signal does in fact contain

information of interest. Furthermore, visualizations such as histograms that are

commonly used to qualitatively analyze benchmark data are in fact a very poor tool

for identifying correlations between samples due to periodicity and temporal trends.

The use of the variance and mean of a time-series of benchmark data is common,

but one must be very careful not to draw complex conclusions about the source data

from these simple metrics. Consider a situation where a benchmark is run twice, once

on a system with no noise, and once on a system with constant noise (i.e., a constant

perturbation uniformly distributed over the time-series). Let δ be the perturbation

that interferes with each sample, S = (s1, s2, · · ·) be the sample without noise, and

Ŝ = (ŝ1, ŝ2, · · ·) be that with noise. Since the noise is uniformly distributed over the

sample sequence, we can let ŝi = si − δ. Assuming the length of S and Ŝ is N , their

means are defined as

µ =

N
∑

i=1

si

N
(4.3)

µ̂ =

N
∑

i=1

(si − δ)

N
=

(

N
∑

i=1

si

N

)

− δ = µ − δ. (4.4)

Similarly, the variance of S and Ŝ can be shown to be equal, regardless of δ.

σ2 =

N
∑

i=1

(si − µ)2

N − 1
(4.5)

σ̂2 =

N
∑

i=1

(ŝi − µ̂)2

N − 1

59



Chapter 4. Microbenchmarking

=
N
∑

i=1

(si − δ − (µ − δ))2

N − 1

=

N
∑

i=1

(si − µ)2

N − 1
= σ2. (4.6)

As such, basic statistical metrics are of little use applied to benchmark data,

including both the FTQ and FWQ methods presented earlier. To truly extract non-

trivial information from a time-series, more sophisticated techniques are required.

Finally, it is frequently the case that time-series data is distilled down to a single

visualization that collapses the time axis out of the sequence. One such method seen

in practice is the histogram. Fig. 4.17 shows that two signals with very different

periodic structure yield the same histogram.

A periodic signal may in fact produce a visually interesting histogram, but the

structure of the histogram easily can be shown to have little or no correlation with

periodic structure in the source data. Furthermore, the histogram can in fact strip

away all interesting information other than a visual representation of µ and σ. As

an example, consider the zero-mean first order differenced data in histogram form

shown in Fig. 4.13.

4.8 Data analysis revisited

In this section, we revisit the analysis aspect of the FTQ microbenchmark, and

discuss how one can take raw FTQ data and begin to extract measures and metrics

for the system on which the benchmark was executed. These can then be applied to

guide performance studies of applications and cross-machine comparisons.

First, recall the following formal definition of the sampling intervals employed

60



Chapter 4. Microbenchmarking

0 1234
Figure 4.17: Two different time-series with an identical histogram. Shading of his-
togram “buckets” corresponds to shading of samples.

by FTQ and the sample data itself. If we consider the sampling period to be Ts

and the kth sample spanned a time of Ts + δ (δ < Ts), then the subsequent sample

k + 1 will sample in a window of Ts − δ. Given that the amount of work chosen to

execute during sampling requires significantly less time than a single sampling period

(Ts >> Twork), the value of δ should not exceed Twork very often. One final issue

needs to be dealt with to provide a data set of high integrity in the time domain. It is

very possible that a heavy-weight perturbation may occur during sampling, resulting

in a single small quantum of work to take not only more than Twork, but Ts itself.

Although the subsequent sample will be adjusted to return to the proper sampling

interval, this sample will have an anomalous duration. No method of sampling can

overcome this. By recording not only the amount of work performed per sample, but

the time stamps for the sampling boundaries, we can identify these unusual samples

and deal with them accordingly during analysis.

Traditionally microbenchmark data analysis is an exercise in basic statistics and

probability, with a rare excursion into uncertainty quantification and frequency do-

main analysis. Given the rather high procurement cost of systems acquired based

61



Chapter 4. Microbenchmarking

on their performance on benchmarks, it is striking that little attention is given to

the detail and integrity of both the data and analysis performed. We propose that

analysis of FTQ data take into account many features of the data.

4.8.1 Statistics for FTQ analysis

The most basic analysis is the statistical character of the data, embodied in the simple

mean and variance computation over either the entire time series, or a sequence of

smaller windows in order to capture nonstationarity in the data. For this discussion

we will consider a sequence of N samples S = (s1, s2, · · · , sn). The basic statistics

can be computed as shown previously in Eq.( 4.3) and ( 4.5). A windowed version of

these statistics will provide a sequence of values. For a window of w where N = kw,

k ∈ N, we get

µS(i) =
1

w

iw
∑

j=(i−1)w

sj (4.7)

σ2
S(i) =

1

w − 1

iw
∑

j=(i−1)w

(sj − µS(i))2. (4.8)

The basic statistics provide a global view of the data, while the windowed version

provides information about the data over time. If the mean or variance increases over

time, this is only apparent in the windowed version. Such nonstationary features are

important to recognize in shared systems or those that have inherent interference.

Reasoning about the basic statistics only causes these features to be missed.

62



Chapter 4. Microbenchmarking

4.8.2 Frequency domain

Often one wants to identify perturbations not only as existing, but as features with

a quantifiable periodicity. To do so, moving the analysis from the time domain to

the frequency domain is necessary. The Fourier transform provides the mapping

from time to frequency domain. To properly enter the frequency domain, one must

not only apply the Fourier transform (implemented most often as a Discrete Fourier

Transform, or DFT), but quantify the sampling period and its statistics. This al-

lows the Fourier coefficients of the various frequency coefficients to be discussed as

frequencies in real time units.

Consider again a sample sequence S(t) of n samples taken at periods of Ts seconds.

Application of the Fourier transform carries this data into the frequency domain

S(ω)
F↔ S(t). (4.9)

The frequencies that can be analyzed limited to a maximum of 1
2Ts

Hz by the

Nyquist sampling theorem. Due to the fact that the data represents a truncation of

the actual sampled “signal” in the time domain, we want to remove the boundary

effects that result from the start and end of the sampling period. The sudden onset

and end of the signal results in the actual signal essentially being convolved with

a rectangular window. Filtering using a Hamming or Hann window removes the

artifacts that appear in the frequency domain due to these boundary conditions.

The window is defined as

w[i] =







α − (1 − α) cos(2πi/(n − 1)), 0 ≤ i < n

0, otherwise
(4.10)

The Hamming window is defined with α = 0.54, while the Hann window defines

α = 1
2
. Applying the window to the data prior to the Fourier transform will remove

63



Chapter 4. Microbenchmarking

these boundary effects from the spectrum.

Sw(i) = S(i) ∗ w(i) , ∀i ∈ [1, n] (4.11)

Much like the time domain statistics discussed above, it is valuable to consider a

short time Fourier analysis of the data to take into account potential non-stationary

and transient features within the data. To accomplish this, we again consider a win-

dow w smaller than the number of samples n. For each window, we apply the Fourier

transform to map the data into the frequency domain. This mapping considers a

smaller number of frequency components than the Fourier transform of the entire

data set, as dictated by the Nyquist sampling theorem. Furthermore, we must again

apply a filter to deal with boundary effects at the endpoints of the sample sequence.

The Hamming window suffices for this purpose.

The Fourier transform of the data is insufficient on its own to provide an easily

interpreted picture of the behavior of the system in the frequency domain. High

and medium frequency components of the signal will manifest as harmonics in the

pure frequency spectrum, and make interpretation of the data difficult with respect

to pinpointing specific frequency components. Fortunately, techniques from speech

analysis and related disciplines can assist in this process. Harmonics show up as

periodic features in the frequency spectrum itself, thus we can examine the frequency

components of the data after a Fourier transform to extract this data. Formally, this

technique is known as the cepstrum, since it is essentially turning the frequency

spectrum inside out. Given the original time series data, we can define the cepstrum

as

Scep(t) = F(log(|F(S(t))|)). (4.12)

Examining the cepstral coefficients (known as quefrencies) given the sampling

64



Chapter 4. Microbenchmarking

period of S(t), we can pinpoint periodic features with respect to time. Obfuscation

due to harmonics is removed in this case.

4.9 Conclusions and ongoing work

The work presented in this chapter is an active research area. Other groups have

used similar techniques based on the FWQ benchmark to parameterize models and

simulations for identifying noise [59]. That work has been highly successful and

continues to provide significant insight about new and existing systems. Noticing

the similarity between benchmark sampling and discrete signal processing, we have

found that a carefully constructed benchmark opens up the world of DSP techniques

to us for our analysis process.

In the process of this research, we were confronted by one of the performance an-

alyst’s most notorious difficulties - timer precision and accuracy. The high-precision

Pentium TSC counter (and similar counters on other architectures) provides a viable

solution for such simple benchmarks in identifying periodic noise that has a frequency

orders of magnitude coarser than the jitter in the TSC timer. Given a high-precision

timer, we were then able to create the FTQ benchmark - a tool for sampling the

performance of the system in the time domain. With this measurement tool, we

then began the process of exploring analysis techniques from signal processing and

sampling theory to extract and identify features within the noise.

Our current work is focused on perfecting how we apply these techniques, and

then interpreting the features that are extracted to correlate them with concrete

hardware and software activities that are the ultimate source of noise and the re-

sulting application performance degradation. A direct consequence of the sampling

theorem is that due to the maximum sampling rate being dictated by the proces-

sor clock, there is a large portion of the spectrum at high-frequencies that is in-

65



Chapter 4. Microbenchmarking

accessible due to aliasing or the slight but unavoidable error on sampling interval

boundaries. This contributes to the subtle but present noise that appears as low

magnitude frequency components in the Fourier decomposition shown in Fig. 4.16.

Application of high- and band-pass filters, filterbanks, and multi-rate analysis tech-

niques (such as polyphase decomposition) from the DSP community may assist in

separating interesting components from sampling noise. Furthermore, exploration of

self-contained, computationally efficient tools to analyze microbenchmark data will

assist non-experts in tuning their own cluster nodes.

Our end goal is to have the ability to measure a system, process the data and,

using well-known signal processing techniques, provide quantitative assessments as

to the nature of the interference, its magnitude, and its probable impact – or lack

thereof – on the performance of an application on a node.

66



Chapter 5

Trace-driven performance

sensitivity analysis

This chapter presents a simulation-based performance analysis method that is based

on message-passing events recorded during the execution of distributed memory par-

allel codes. This research targets programs based on the MPI message-passing library,

but is constructed to be general enough to incorporate other similar programming

models for distributed memory parallel computing. This chapter is based on our

earlier work [70] at the 2006 IEEE International Parallel and Distributed Processing

Symposium.

The message passing model used to build a parallel program defines a set of pro-

cess interactions that can be represented as a weighted, directed graph. Message

passing events are represented as vertices. Edges between event vertices for each

processor are created to represent the ordering of events, with edge weights corre-

sponding to the duration of time spent between them. Edges are also placed between

event counterparts on different processors, such as a paired send and receive, or a

collective barrier. As such, the graph captures the data and synchronization flow of

67



Chapter 5. Trace-driven performance sensitivity analysis

the parallel program. Events can be broken into start and finish sub-events, each

represented as a vertex and connected by an edge that corresponds to the time spent

within the event itself. Further granularity can be used if one desires to model the

transactions that are actually implemented for the various message passing prim-

itives. Metadata related to parameters such as data sizes and types can also be

included as vertex annotations or edge weights depending on the intended analysis

to be performed on the graph.

Traces of parallel program executions provide the necessary data from which this

graph can be reconstructed. By representing relevant communication and synchro-

nization primitives as well defined sub-graph structures, one can rigorously define

how perturbations can be simulated by manipulating the edge weights within the

graph and propagating those modifications along directed edges. In this chapter,

this method of trace-driven analysis is illustrated with respect to operating system

interference using measurements derived from the FTQ microbenchmark in Chap-

ter 4.

Trace-driven analysis has a long history that stretches back to batch-based main-

frames [26, 65, 64], and continues through parallel profiling tools such as KOJAK [51],

Vampir [75], and others. The key advantage to trace-based analysis is that it is rooted

in actual, observed behavior of workloads. As such, it captures nuances and details

that idealized models are incapable of. On the other hand, trace-based analysis has

drawbacks. In particular, large, long running programs can produce huge traces that

can be virtually impossible to store on all but the largest storage systems. This has

been addressed by past researchers in projects such as Paradyn [47] and Dimemas [4],

and their techniques for data reduction can be applied to this work. Similarly, trace-

based analysis fails to sufficiently capture the structure of a parallel program with

respect to non-determinism that may be used to increase performance. This issue is

discussed in detail in Section 5.10.

68



Chapter 5. Trace-driven performance sensitivity analysis

5.1 Absorption measures

Simulation-based analysis works because parallel programs that do not rely solely

on synchronous communications can use asynchrony to their advantage to absorb

single processor perturbations without suffering significant run time changes. This is

widely known in the parallel programming community, and is often cited regarding

variation in communication performance and solved through overlapped communica-

tion and computation. The concept that underlies this overlap is that by initiating

a communication operation before it is actually necessary and then proceeding to

perform computations before its completion is required allows the communication to

be delayed by a small, but valuable amount. If the amount of computation requires

some time tc to complete, then the communication operation may be delayed by an

amount of time on the order of tc without adversely affecting the performance of the

parallel program.

This logic can also be applied to performance analysis of parallel programs with

respect to perturbations they experience in the sequential phases of computation that

are performed between communications operations. Operating system and other in-

terference experienced by the program on computational nodes is a prime source of

these perturbations. Most applications are not perfectly load balanced, leading to

some degree of skew in the time that each processor reaches communications opera-

tions. This skew can have both detrimental and beneficial effects. It is detrimental

to performance for one process to be perturbed, because it forces one or more other

processes to spend time idle while they wait for the perturbed processes to catch up.

The benefit is that these processes that are idle can experience perturbations on the

order of the duration of their time spent idle without affecting the idle time induced

on other processes. This allows the parallel program to experience perturbations

that are absorbed by its inherent load imbalance.

69



Chapter 5. Trace-driven performance sensitivity analysis

Simulation of perturbations allows the degree to which a program can absorb

them to be quantitatively estimated. Traversal of the message-passing graph of the

program isolates the local computational phases on each processor, into which time

delays are introduced and propagated over the graph based on the blocking semantics

of the message-passing operations. The simulation produces two quantities for each

processor representing the increase in time taken to complete the parallel program

(non-absorbed delay), and the total amount of delay experienced by the program

during its execution. The ratio of these values represents the absorption ratio that

the program can experience as a function of the perturbation rate. A value of one

implies that the program cannot absorb perturbations, while a value of zero implies

that the program can completely absorb perturbations at the noise level simulated.

This absorption ratio provides the first quantitative description of the robustness of

parallel programs to local processor performance perturbations.

5.2 Trace-based delay simulation

The primary causes of performance degradation within distributed memory parallel

computers are the latency of the interconnection network and perturbations to appli-

cations due to interactions with the operating system and other tasks. One technique

for analyzing the performance characteristics of a distributed memory parallel pro-

gram is to simulate perturbations in message latency and processor compute time,

and propagate these perturbations through subsequent messages and computations

to observe their effect on application runtime. This is easily modeled as a discrete

event simulation, and many well defined techniques exist for building and analyzing

such models [37, 31]. Unlike a general discrete event model, we chose to directly

analyze the message-passing graph that results from the execution of the program

on a set of nodes. The formal definitions used for delay propagation are based on

70



Chapter 5. Trace-driven performance sensitivity analysis

this graph. In this chapter, we introduce a performance analysis methodology that is

developed to study these perturbations. This allows us to greatly simplify the model

and analysis code, and provides a simple framework for defining the constraints un-

der which the analyzer can model perturbations while still guaranteeing correctness

and message order of the parallel program.

We perform and present this methodology in the context of the Message Passing

Interface (MPI) library [45], but the work itself is not restricted to MPI. Parallel

programs for distributed memory systems generally are implemented via primitives

for passing data between processors and synchronizing computations between pairs

of processors and collective processor groups. The MPI implementation of this pro-

gramming model is widely used and currently very popular. Other implementations

exist, such as the older Parallel Virtual Machine (PVM) [74] and the Aggregate Re-

mote Memory Copy Interface (ARMCI) [54]. Our performance analysis methodology

is applicable to all of these message-passing implementations by simply defining the

primitives of the implementation in the context of the framework presented here.

5.2.1 Related work on trace-driven performance analysis

Several researchers have developed model and trace-based systems for analyzing the

performance of parallel programs. Petrini et al. [59] relied on modeling the parallel

program and the parallel computer before performing the analysis. This method was

used to predict the performance of programs on machines prior to their construction,

and to identify the causes of performance discrepancies from the predictions once the

machine was constructed.

Unlike the model-based approach, other techniques are driven by traces of ac-

tual program runs. Trace driven methods have the advantage that they capture

nuances in execution that arise from unique data conditions at runtime that cannot

71



Chapter 5. Trace-driven performance sensitivity analysis

be modeled purely by examining the static program code itself. Unfortunately, this

specificity is not as flexible as model-based approaches with respect to performance

prediction and extrapolation. In a trace, one loses the statistical properties of the

control flow branch and join structure of the original code, limiting the potential

for performance extrapolation. Furthermore, non-deterministic operations used to

increase performance become fixed and deterministic in the trace.

Dimemas [4, 25], a commercial tool developed at CEBPA-Centro Europeo de

Paralelismo de Barcelona, is one such tool for performance prediction of parallel pro-

grams using trace-based analysis. The user specifies the communication parameters

of the target machine. A simple model [4, 25, 62] is assumed for communication

which consists of (a) machine latency, (b) machine resources contention, (c) message

transfer (message size/bandwidth), (d) network contention, and (e) flight time (time

for message to travel over the network). Given a trace-file and the user’s selection of

network parameters, Dimemas simulates the parallel program’s execution using the

communication model. While Dimemas captures most of the parameters that affect

the impact of the network on a parallel program’s execution time, the model does

not have similar capabilities for analyzing the operating system’s interference with

the application’s performance.

Users who are familiar with trace analysis tools such as Vampir [75] or the

Dimemas and Paraver suite will find the concept of a message-passing graph essen-

tially identical to the visualizations that they create of parallel program execution.

While Dimemas and our work are both trace-based performance analyzers for par-

allel programs, several key differences between Dimemas and our framework exist.

1) We seek to parameterize both the on-node noise and cross-node messaging us-

ing empirically-derived distributions from microbenchmarks. Dimemas provides an

API for this purpose, but Dimemas itself does not actually perform this type of

parameterization. 2) We do not require a global resolution of clocks in the trace

72



Chapter 5. Trace-driven performance sensitivity analysis

files required by the Vampir trace format used by Dimemas. 3) In our framework,

we handle arbitrarily large trace files by streaming the trace through the simulator

instead of loading it all in core. In comparison, Dimemas can handle large traces by

reducing their information content in a preprocessing step. 4) We also seek to com-

pare the effects of various architectures by using experimentally-derived parameter

distributions to construct empirical distributions for deriving simulation parameters.

Dimemas provides a ‘plug-in’ mechanism that can be used to simulate delays both

at the interconnect layer due to latency and contention, and the compute node to

simulate operating system noise. As future work, we will investigate the use this plug-

in mechanism to parameterize simulations using experimentally-derived empirical

distributions, instead of scalar constants or idealized probability distributions. In this

chapter, we extend the concept of trace-based analysis beyond the static messaging

graph to a framework in which the graph is modified in a disciplined manner to

model performance perturbations and their effect.

5.3 The message-passing graph concept

Consider a parallel program using a distributed memory programming model via

message-passing. On a given processor, the program alternates between periods of

local computation and resource usage, and interaction with remote processors via

message-passing events for both data movement and control synchronization (see

Fig. 5.1). If each of these periods has a time stamp at the beginning and a small

amount of meta-data indicating what occurred during the period, one can easily

determine what the processor was doing at any given time. We begin constructing

the message-passing graph by creating a set of “straight-line” graphs (one per pro-

cessor) with nodes at the beginning and end of each computation of the messaging

period and an edge between successive events labeled with the duration of the period.

73



Chapter 5. Trace-driven performance sensitivity analysis

�������������
�����
�����
��������������������

�����
�����
����� ...

time

c1 m1 c2 m2

Figure 5.1: Alternating phases of computation (ci) and messaging (mi) over time.

Given these straight-line graphs, we now must consider message-passing activity to

create the program’s overall message-passing graph. The edges used to construct the

straight-line graphs are referred to as local edges in this chapter.

During periods of message-passing activity, the processor interacts with one or

more other processors depending on which message-passing primitives are invoked.

Given the ordering of the events on each processor and some simple knowledge about

the blocking semantics of message-passing primitives, we can easily perform a single

pass over all events to decide which events on remote processors correspond to local

message-passing events. Using this information, we can create edges between the

coupled events on interacting processors representing the initiation and termination

of a message-passing primitive. These edges that represent processor interactions via

message-passing are referred to here as message edges.

It is vitally important for modeling consistency to create a pair of message edges

for each message-passing event, although where one places the edges depends on the

event being modeled. The importance of the edge pair is in recognition of the effect

of local perturbations on remote nodes on the completion time of local message-

passing events. The message-passing edges must capture not only latency variations

between the nodes, but also allow for the propagation of remote perturbations back

to all affected processors.

For modeling consistency and clarity, the model specified in this chapter embeds

the semantics of the message-passing operations and their perturbations within the

74



Chapter 5. Trace-driven performance sensitivity analysis

graph itself. We avoid pushing the semantics of the operations to the level of the

algorithm that walks the graph, as this both complicates the algorithms and makes

verification and validation of the simulation more difficult. For future research, we

will investigate pushing such responsibility to the algorithms instead of the graph

representation for performance optimization of the analysis tool itself.

In the next section, we show how to define this graph for a subset of MPI-1

message-passing primitives [45] based on the send-receive model. Many of the re-

maining MPI operations share characteristics with those we describe, and our defini-

tions can be easily extended to include them. Our methods currently do not attempt

to capture the put-get semantics of other message-passing models such as ARMCI

and those introduced in MPI-2 [46].

5.4 Graph primitives for a subset of MPI-1

A common method to classify message-passing primitives is to partition them into

two sets based on the number of interacting processors, and partition these into

two further sets based on the blocking semantics of the events. The first partition

separates pairwise events from collective events. A simple send operation is pairwise,

while a reduction is collective. The second partition separates blocking events from

nonblocking events. The simple synchronous send operation is blocking, while an

MPI MPI Isend is nonblocking.

A third class of primitives exist for single node operations that are necessary, but

straightforward with respect to this work. These include functions such as MPI Init,

which appear in the trace files and graph, but given the fact that they do not interact

with other nodes, are trivial to model.

75



Chapter 5. Trace-driven performance sensitivity analysis

5.4.1 Pairwise primitives

The first set of primitives are the pairwise primitives. For a set of parallel proces-

sors, a pairwise event is defined as one that involves two processors exchanging a

(potentially empty) data set.

Blocking

A blocking operation will not return control to the caller until it has successfully

completed or encounters an error condition from which it cannot recover or proceed.

The MPI Send operation is a blocking primitive that sends a block of data to a

receiver who posts a matching MPI Recv receive operation. The MPI specification

provides three forms of blocking send: the synchronous send, the buffered send, and

the ready send. Each blocks until some condition has been met.

Pairwise blocking operations are easy to model in the graph, as they require

a simple matching of the pair of events and the blocking nature of the operation

requires a well defined begin and end relationship between the nodes. The result

is that perturbations propagate through the graph to each node and preserve the

pairwise relationship and event ordering.

Blocking send/receive pair

Here we present a simple graph representation of the paired send/receive operation

MPI Send and MPI Recv.

In the presence of modeled perturbations, the end times of each operation after

perturbation are determined by Eq. (5.1).

76



Chapter 5. Trace-driven performance sensitivity analysis

ready ready

block

δos2
δos1

δλ1
+ δt(d)

δλ2

complete

tss
: Sendstart(d)

tse
: Sendend tre

: Recvend

trs
: Recvstart

Figure 5.2: Subgraph representing a blocking send and receive pair of d bytes of
data. Locations are indicated where operating system noise (δos), latency (δλ), and
bandwidth (δt(d)) are modeled.

t′se
= max( tse

,

tss
+ δos1 + (tse

− tss
),

tss
+ δλ1 + δt(d) + δos2 + δλ2 + (tse

− tss
))

t′re
= trs

+ δos2 + δλ1 + δt(d) + (tre
− trs

)

(5.1)

As we can see, due to the possibility of on-node interference (δos), messaging

latency (δλ), and perturbations that are proportional to the amount of data sent

(δt(d)), the completion time of send operations is dependent on the maximum of

three values. These represent the original completion time (tse
), the completion time

delayed by local perturbations on the sender alone (tss
+ δos1), or the delay due to

latency in sending the message, processing it on the receiving end with potential

receiver-local perturbations, and latency in acknowledging completion (tss
+ δλ1 +

δt(d) + δos2 + δλ2).

77



Chapter 5. Trace-driven performance sensitivity analysis

Nonblocking

It is widely recognized that significant performance gains up to some limit can be

made by hiding latency to slow resources such as memory and I/O by overlapping

additional computation with the resource request. As such, parallel programs often

take advantage of nonblocking messaging primitives to overlap inter-processor com-

munication with local computation to hide the high latency of the interconnection

network. MPI provides primitives such as MPI Isend for this purpose. These non-

blocking primitives return immediately (hence the “I”) to the caller, and their status

can be checked at a later time. This allows the program to post data for transmission

to a receiver as soon as the data is ready, and perform additional computation until

the sender must block (if at all) pending the completion of the send operation.

Due to the fact that nonblocking calls immediately return, variations in latency

and local perturbations on the receiving end of the transaction are not immediately

apparent to the sender. We are faced with two possible situations with different

consequences. First, we have a situation where the transaction is semi-synchronous.

The send is nonblocking, but at a later time the sender invokes a blocking routine such

as MPI Wait that forces the sender to not proceed further until the communication

is complete. This is easy to simulate, as it can be considered similar (not necessarily

equivalent) to a synchronous send operation that has been separated into two phases.

The lack of equivalence is due to the fact that multiple instances of the operation

may be interleaved.

The second situation is trickier, and represents a truly asynchronous interaction

between processors. In this case, the sender posts nonblocking send operations, and

never blocks on the successful completion of the transaction before posting subse-

quent sends to the same receiver. In Fig. 5.3 we illustrate the first case of a paired

send and receive followed at some later point by a pair of wait operations.

78



Chapter 5. Trace-driven performance sensitivity analysis

δos1
δos2

δos3
δos4

tws2
: Waitstarttws1

: Waitstart

twe1
: Waitend twe2

: Waitend

tre
: IRecvendtse

: ISendend

tss
: ISendstart(d) trs

: IRecvstart

δλ2

posted posted

block block

δλ1
+ δt(d)

Figure 5.3: Subgraph representing a nonblocking send and receive pair of d bytes
of data, and the corresponding wait operations. The send/receive pair is matched
with a wait pair by matching the status flags that uniquely identify the send/receive
transaction.

Eq. (5.2) shows the modified end times for the wait operations. Note that the

end times of the send and receive operators are not modified due to their immediate

return semantics.

t′we1
= max( twe1 + δos1 + δλ1 + δt(d) + δλ2 + δos3,

twe1 + δos2 + δλ2 + δos3)

t′we2
= max( twe2 + δos2 + δos4 ,

twe2 + δos1 + δλ1) (5.2)

5.4.2 Collective primitives

Collective operations are used in nearly all parallel programs that require each pro-

cessor to receive some amount of global state during the execution of the parallel

program. These include synchronization primitives such as a barrier, data distri-

bution primitives such as broadcast, and global application of associative operators

such as a reduction. The presence of collective operations is often a primary source

of performance degradation in a parallel program because a single slow processor will

79



Chapter 5. Trace-driven performance sensitivity analysis

induce idle time in all other processors. In particular, local perturbations can have

a global effect on the overall program behavior.

Fortunately, modeling this is easily accomplished in the graph framework. Con-

sider a set of p processors participating in a collective operation. Each processor has

incurred some amount of simulated delay up to this point due to local perturbations

and message latency. What must be decided is what the delay on each processor

should be after the collective operation has occurred. A simple approach is to choose

the maximum delay from the set of processors, and propagate it across all others.

This is not necessarily accurate beyond a rough first approximation. The collective

operation requires a sequence of network transactions to occur, and between each

exists periods of local computation. This means that there is a possibility that local

perturbations and network latency may cause the delay on each processor after the

transaction to actually be greater than the maximum delay entering the collective.

Consider an all-reduce operation (MPI AllReduce) such as a global summation.

One can easily show that a butterfly messaging topology can be used to require each

processor to send and receive O(log(p)) messages [32, 58]. This can be explicitly

constructed in the graph, which allows for analysis to be performed without any

special knowledge of the operation. Unfortunately, this is not space or time efficient

given the fact that we know a-priori that a single collective operation can be con-

sidered equivalent to log(p) periods of local computation and pairwise messaging.

As such, we can simply model the collective as an edge from all p processors to a

single processor, on which the log(p) communication and computation perturbations

are propagated, and a set of edges from this processor to all others that induces

no additional perturbations, but simply communicates the maximum of this set of

perturbations to every other processor.

In Fig. 5.4 we show how an AllReduce operator is modeled. In the AllReduce

operation, each node must contribute local data to a global operation, the result of

80



Chapter 5. Trace-driven performance sensitivity analysis

AllReducestart1

block block

AllReduceend1

AllReducestartp

AllReduceendp

· · ·

· · ·AllReduceend2

AllReducestart2

block· · ·

lδ

lδmax
lδmax

lδmax

lδ lδ

Figure 5.4: An AllReduce operator subgraph. The abbreviated noise annotations on
edges are described in the text.

which is then sent to all processors. Instead of modeling the communication topology

precisely, we approximate it by sampling operating system noise and latency log(p)

times for each processor, and labeling the edge from each ith processor to the first

with this value called lδ. The maximum value of all lδ values is computed, and

propagated back out to all nodes along the return edge labeled lδmax
. This has the

effect that is frequently observed in practice of forcing the slowest node (or in this

case, the most perturbed node and link) to dominate the performance of the entire

collective.

A simplification of this graph can be used to model a simpler Reduce operator

in which only one processor holds the result after completion. In this case, three

modifications are necessary. First, the message edges labeled lδ are simplified to only

sample latency once. Second, each processor has a local edge from the start node to

the blocking node labeled with local operating system noise. Finally, the lδmax
edges

become unlabeled, as they are do not contribute additional perturbations themselves,

but are simply required to carry the contribution of noise on the processor receiving

the reduction result to those providing data to the operation.

81



Chapter 5. Trace-driven performance sensitivity analysis

5.5 Creation of message-passing graph

The message-passing graph that we create for analysis is generated using trace data

from an execution of the program on a parallel system. Each processor creates an

event trace that records the local timestamp, the event type, and event metadata

for each event that occurs. This is done via the standard PMPI interface defined

by the MPI specification. Each MPI primitive to be recorded is wrapped with a

lightweight PMPI wrapper that records the event in a memory resident buffer. The

buffer is dumped to an event trace file when it becomes full, and is then reset to

empty for future events. The size of this buffer can be tuned to compensate for

event frequency and overhead for I/O to dump the trace information to a file. It is

unavoidable that tracing will introduce performance perturbations not present in the

non-instrumented version of the parallel program. We have taken care to minimize

this perturbation, but must recognize that it is present and must be kept in mind

during later analysis of the program performance. For future work we will use more

robust tracing tools that already exist as discussed later.

5.5.1 Avoiding clock synchronization

It is important to recognize that constructing the graph only requires pairing events

across processors. The execution order on each processor makes this possible using

execution ordering only. It is tempting, although misleading, to infer information

about two processors using their local timestamps and clocks. This is related to

a difficult problem in distributed systems to synchronize a set of clocks that are

separated by links with non-trivial, and most importantly, unknown and statistically-

defined latencies and clock drifts [15].

We take advantage of the fact that a trace of a program that ran to completion

represents a message pattern that was sufficiently correct for a proper run. Each

82



Chapter 5. Trace-driven performance sensitivity analysis

message event is guaranteed to have a counterpart, and this counterpart can be found

simply by processing each event in order on each processor. If an event is encountered

and the counterpart must be found, the algorithm must simply find the next event

on the counterpart processor that has not already been found that matches. This

is different, and significantly simpler than deriving the messaging graph from static

code, by recognizing the fact that the run occurred and the message ordering is fixed

as a result. Although attempting to resolve clocks across the traces is also a possible

way to align and match events, using the message ordering on each processor to

regenerate the messaging pattern makes this unnecessary.

5.5.2 An implementation of the graph construction algo-

rithm

The Chama simulation engine, described in detail in Section 5.9 implements the

concepts in this chapter. It is able to process trace data and introduce and propagate

simulated perturbations based on the message-passing graph in order to analyze

the sensitivity of an application to message-passing latency and operating system

noise. The graph is created according to the message-passing primitive semantics

specified by the MPI standard and implementation specification version 1.2, some

of which were illustrated in Section 5.4. The trace files are generated using a C

library conforming to the PMPI standard with timestamp data provided by the high

resolution, cycle-accurate timers available on all modern microprocessors.

We now describe the construction of the message-passing graph from trace data.

An event is split into two subevents: a start subevent and an end subevent, which

correspond to entry and exit from the message passing operation that produced the

event. For finer granularities, more subevents can be added without much effort

to capture implementation specific details of how the processors interact during the

83



Chapter 5. Trace-driven performance sensitivity analysis

message-passing primitive.

Fig. 5.5 shows a message-passing graph that our model generated from a set of

trace data. For simplicity and clarity in this example, we used reduced trace data

and only blocking MPI primitives. Each edge connects two subevents with an edge

weight equal to the delay incurred between its source and sink subevents. The source

and sink subevents need not be necessarily the start subevent and end subevent, but

may be anything depending on whether the edge is a local edge or a message edge.

In order to simulate the operating system noise, the weight of a local edge connect-

ing two subevents in the same trace is altered and the change is additively propagated

through the graph to all graph nodes reachable from the sink node of the modified

edge. Likewise, to simulate network latency, the weight of a message edge connect-

ing two subevents in different traces is altered and the change is again propagated

through the graph. Thus, behavior of the program under study with varying oper-

ating system circumstances and network parameters can be studied quantitatively

by modifying edge weights and carrying their cumulative effect through the graph

as it is traversed. This information gives a firm base on which the degree of suitabil-

ity of a parallel program to a particular platform can be determined. We also can

explore how varying parameters affects not only overall runtime, but regions within

the graph where perturbations are absorbed or fully propagated, corresponding to

tolerant or highly sensitive code, respectively.

84



Chapter 5. Trace-driven performance sensitivity analysis

T3_E9_FINALIZEse_end

T0_E0_INITse_begin

T0_E0_INITse_end

T0_E1_SEND_T1se_begin

T0_E1_SEND_T1se_end

T1_E2_RECV_T0se_begin

T0_E2_RECV_T1se_begin

T1_E2_RECV_T0se_end

T1_E3_SEND_T0se_begin

T0_E2_RECV_T1se_end

T1_E3_SEND_T0se_endT0_E3_ALLREDUCEse_begin

T0_E3_ALLREDUCEse_end

T0_E4_RECV_T1se_begin

T0_E4_RECV_T1se_end

T1_E7_SEND_T0se_begin

T1_E7_SEND_T0se_endT0_E5_SEND_T1se_begin

T0_E5_SEND_T1se_end

T1_E8_RECV_T0se_begin

T0_E6_RECV_T1se_begin

T1_E8_RECV_T0se_end

T1_E9_RECV_T2se_begin

T0_E6_RECV_T1se_end

T1_E10_SEND_T0se_begin

T1_E10_SEND_T0se_endT0_E7_ALLREDUCEse_begin

T0_E7_ALLREDUCEse_end

T0_E8_FINALIZEse_begin

T0_E8_FINALIZEse_end

T1_E0_INITse_begin

T1_E0_INITse_end

T1_E1_SEND_T2se_begin

T1_E1_SEND_T2se_end

T2_E2_RECV_T1se_begin

T2_E2_RECV_T1se_end

T2_E3_SEND_T1se_begin

T1_E4_RECV_T2se_begin

T1_E4_RECV_T2se_end

T2_E3_SEND_T1se_end

T1_E5_ALLREDUCEse_begin

T1_E5_ALLREDUCEse_end

T1_E6_SEND_T2se_begin

T1_E6_SEND_T2se_end

T2_E7_RECV_T1se_begin

T2_E7_RECV_T1se_end

T2_E8_SEND_T1se_begin

T1_E9_RECV_T2se_end

T2_E8_SEND_T1se_end

T1_E11_ALLREDUCEse_begin

T1_E11_ALLREDUCEse_end

T1_E12_FINALIZEse_begin

T1_E12_FINALIZEse_end

T2_E0_INITse_begin

T2_E0_INITse_end

T2_E1_SEND_T3se_begin

T2_E1_SEND_T3se_end

T3_E1_RECV_T2se_begin

T3_E1_RECV_T2se_end

T3_E2_SEND_T2se_begin

T2_E4_RECV_T3se_begin

T2_E4_RECV_T3se_end

T3_E2_SEND_T2se_endT2_E5_ALLREDUCEse_begin

T2_E5_ALLREDUCEse_end

T2_E6_SEND_T3se_begin

T2_E6_SEND_T3se_end

T3_E4_RECV_T2se_begin

T3_E4_RECV_T2se_end

T3_E5_SEND_T2se_begin

T2_E9_RECV_T3se_begin

T2_E9_RECV_T3se_end

T3_E5_SEND_T2se_endT2_E10_SEND_T3se_begin

T2_E10_SEND_T3se_end

T3_E6_RECV_T2se_begin

T2_E11_RECV_T3se_begin

T3_E6_RECV_T2se_end

T3_E7_SEND_T2se_begin

T2_E11_RECV_T3se_end

T3_E7_SEND_T2se_endT2_E12_ALLREDUCEse_begin

T2_E12_ALLREDUCEse_end

T2_E13_FINALIZEse_begin

T2_E13_FINALIZEse_end

T3_E0_INITse_begin

T3_E0_INITse_end

T3_E3_ALLREDUCEse_begin

T3_E3_ALLREDUCEse_end

T3_E8_ALLREDUCEse_begin

T3_E8_ALLREDUCEse_end

T3_E9_FINALIZEse_begin

Figure 5.5: A message-passing graph for trace data containing blocking MPI primi-
tives.

85



Chapter 5. Trace-driven performance sensitivity analysis

5.5.3 Correctness

Correctness of the graph and its modification during the analysis process is vital.

The process of taking traces and merging them into a single message-passing graph

has the benefit of using the fact that the program did run correctly in the first place

in order to create the traces. Constructing the graph based on this is simply a matter

of associating events to match message end points, and this has been shown to be

possible in the past as evidenced in tools such as Vampir. Correctness is important

to consider though when modifying the timings of events in the process of analyzing

the noise sensitivity of the program.

The key question in this process is whether the modified timings of events causes

events to occur prematurely with respect to their counterparts on other processors.

In a purely synchronous program, this is impossible, as the delays are propagated

along the local and message edges, and all events on interacting processors are delayed

in a quite straightforward manner. Nonblocking, asynchronous interactions are the

complicating factor. For example, a processor that initiates a send that does not

block on the successful completion of the transmission does not immediately see

delays on the receiving end before it proceeds to additional events. In MPI, this

is realized in the MPI ISend primitive. Fortunately, in most codes that have been

examined, these nonblocking calls have a corresponding blocking event that causes

the sender to block on a check for the completion of the send. In essence, the

nonblocking send allows the programmer to implement a synchronous send operation

with the ability to inline code that does not depend on the completion of the send

in between the initiation of the transfer and the check that it completed. In MPI-1,

this is realized as the pairing of MPI ISend with a blocking MPI Wait (with WaitAll

and WaitSome existing for similar blocking semantics on sets of ISend operations)

primitive.

86



Chapter 5. Trace-driven performance sensitivity analysis

In the worst case, one processor issues a sequence of nonblocking sends without

checking that any have completed before issuing more to the same processors. If

the receiver posts blocking receives or MPI Wait operations, correctness is preserved

by ensuring that delays in the sends are propagated to the receiver and push the

wait operations ahead to match the difference in time due to the delay. In the

event that this is not possible, and both sides use only asynchronous calls with no

synchronization (a possible, although questionable practice for most programs), the

tool cannot guarantee that an arbitrarily perturbed graph is correct and produces a

warning that this situation has been identified.

5.6 Parameterizing simulated perturbations

Given application traces, the questions that we wish to answer using the framework

and tools presented here deal with how well one can expect a program to perform on

a parallel computer under the influence of a set of performance influencing parame-

ters. For example, one can execute a parallel program on a system with a minimal,

lightweight kernel running on compute nodes, and then explore what amount of op-

erating system overhead the application can tolerate before significant performance

degradation occurs. The previous sections discuss the methodology for exploring the

application performance under varying parameters. To best study these questions,

one must also have a disciplined approach to determining how to parameterize the

simulation and analysis tools.

We propose that parameters be determined using microbenchmarks that are care-

fully constructed to probe very specific performance parameters. Chapter 4 describes

an example microbenchmark in great detail. Each parallel platform has a signature

that is defined by the set of metrics determined by various microbenchmarks, and

this signature is provided to the analysis tools, along with an application trace,

87



Chapter 5. Trace-driven performance sensitivity analysis

to estimate the behavior of the program on the new platform. Our current work

treats parameters as random variables with a distribution parameterized by the mi-

crobenchmarks.

Two methods can be used to generate parameters for analysis given the output

of microbenchmarks. First, one can estimate parameters for assumed distributions

of the parameters. For example, it is generally assumed that queueing time can be

modeled as an exponential distribution, and the parameter of the distribution can

be estimated from experimental measurements. The second method for generating

parameters is to use the data itself to build an empirical distribution. This method

relies on gathering a sufficiently large number of samples such that the shape of the

actual distribution is accurately captured. It is a simple exercise to show that the

resulting empirical distribution approaches the actual distribution as the sample size

increases, as stated by the law of large numbers [73].

5.6.1 Operating system noise

Operating system noise is the result of time lost to non-application tasks due to

operating system kernel or daemons requiring compute time. A “noisy” operating

system will frequently take time from applications for its own operations, while a

“noiseless” operating system will allow applications to use as many cycles as possible.

The effects of this noise can be quite severe, as exemplified by experiences with the

ASCI Q supercomputer [59].

Microbenchmarks are available to probe systems to infer the perturbation due to

operating system noise, and the data from these microbenchmarks can be used to

generate empirical distributions from which our analysis tool can sample. The fixed

time quantum (FTQ) microbenchmark described in [69] and Chapter 4 probes for pe-

riodic perturbations in a large number of fine grained workloads. The point-to-point

88



Chapter 5. Trace-driven performance sensitivity analysis

messaging microbenchmark described by Mraz [52] uses a simple message-passing

program to probe the effect of noise on message-passing programs. As discussed in

Section 5.4, noise is represented in the message-passing graph via edge weights on

local edges. This models the additional time a processor requires to complete a fixed

amount of work due to preemption for operating system tasks.

5.6.2 Interconnection network performance

The interconnection network on a parallel computer has two parameters that in-

fluence performance the most: bandwidth (how much data can be transmitted in

a quantum of time), and latency (how much time is required to move a minimal

quantum of data between two nodes). These parameters are easy to determine, and

well known; simple benchmarks for bandwidth and latency exist for MPI and other

communication protocol layers. A latency benchmark measures the variation in the

time taken to send a message between two nodes. Given the lack of an accurate,

high-precision global clock across communicating processors, the latency benchmark

uses a traditional ping-style message exchange between two processors. A bandwidth

benchmark is similar, except with messages of a significant size in one direction, with

an acknowledgment returned to the sender. The size of the large message must be

sufficiently large so as to make the latency component negligible in the overall time.

Two assumptions are made regarding this benchmark. First, the connection

between the nodes has symmetric performance characteristics with the distribution

of message latencies (from sender to receiver and vice-versa) both independent and

identically distributed (iid). Second, two separate messages from one host to another

have latency distributions that are also iid. Systems where routing adaptation and

“warming up” of links occurs will violate this second assumption, and a suitable

alternative tool must be employed to measure and model the appropriate statistical

89



Chapter 5. Trace-driven performance sensitivity analysis

distribution.

Variations in message latency and bandwidth are modeled within the graph as

edge weights on message edges. Latency noise is modeled independently of the size

of the message, while variations in bandwidth must be modeled as a function of

the message size. Interconnect noise is also simulated using empirical distributions

derived from sampled data.

5.6.3 Parameterization of perturbers

The microbenchmark data gathered from compute nodes is of the form of a time

series of samples, each representing the user-process work achieved over a unit of

time. This must be transformed into a form that can be used to statistically sample

perturbations to induce into the simulation. One approach that is used in this work

is to derive an empirical distribution based on the raw, measured data, from which

we can sample. An empirical distribution is, in essence, a histogram of the data that

has been normalized such that the total height of all bins adds to one in order to

fulfill the requirement that a probability distribution function (PDF) has an integral

of one.

The choice to use an empirical distribution derived from raw measured data versus

an idealized distribution is important to consider. Many features of a parallel system

can in fact be reasonably characterized using ideal probability distributions in which

the benchmark is simply used to derive the distribution parameters (such as mean

and variance). For example, features of the system that are best modeled as arrival

counts over time (such as message arrival in a queue) can be modeled as a Poisson or

compound Poisson process [37]. Other processes can be modeled as Exponential or

Weibull distributions. Simple visual examination of the empirical distribution data

from the FTQ benchmark in Fig. 5.6 makes it clear that the data does not necessarily

90



Chapter 5. Trace-driven performance sensitivity analysis

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06
FTQ Empirical Distribution

Level of interference

P
ro

b
a

b
ili

ty

Figure 5.6: Empirical distribution derived from FTQ data. The data shows that
small levels of perturbations are likely, and large-scaler perturbations are rare.

match any ideal distribution clearly. An exponential distribution can approximate it,

but fails to capture the nuances that distinguish different systems from each other.

The empirical distributions derived from measured data in Section 6.2 clearly show

this.

Generation of empirical distribution

Suppose we start from a raw microbenchmark time series S containing n samples

with a sampling period of ts. We can construct an empirical probability distribution

E by creating a histogram HE of S with b bins, where b is chosen depending on

the granularity of the source distribution of the data that we wish E to capture.

Fig. 5.6 shows the data for b = 100. Each bin will contain the number of samples

ni that performed [ai, ai+1) units of work, where ai = i∗max(S)
b

, for integers i ∈ [0, b].

A probability distribution requires that the total integral of the PDF is unity, so we

91



Chapter 5. Trace-driven performance sensitivity analysis

can define

ĤE(i) =
ni

n
. (5.2)

We want to sample from this empirical PDF. To do so, we can construct the

cumulative distribution function that corresponds to the PDF of E. This is simply

defined as

CE(i) =

i
∑

j=0

ĤE(j). (5.3)

For a given time interval d, such as the local computational time between two

message passing events, we can use this to estimate the amount of work that could

occur during this period. Assuming d >> ts,

nd =

⌊

d

ts

⌋

(5.4)

samples of the microbenchmark capture the approximate amount of work that could

have been achieved over this interval in the presence of the inherent system noise.

To compute the amount of work that corresponds with this interval, we use the

empirical distribution E to estimate it. First, we compute nd samples from a uniform

distribution

u(i) ∼ U [0, 1] , i ∈ [1, nd]. (5.5)

The work achieved over the time period td is therefore

wd =

nd
∑

i=1

a⌊j⌋, where j is the point where CE(j) ≤ u(i). (5.6)

92



Chapter 5. Trace-driven performance sensitivity analysis

In the presence of higher amounts of noise, the histogram would contain less

samples in bins with high work counts and more samples in bins with lower work

counts. Note that in Fig. 5.6, the x-axis represents the level of noise present, which is

inversely proportional to the achieved work count represented by a bin. Thus given

two bins, the one with the lower noise level corresponds to the higher achieved work

count. We can pick intermediate work count bins, and increase their membership

while decreasing the membership of bins corresponding to higher work counts. Over-

all, we maintain the same number of samples, but simply simulate noise by artificially

making some samples achieve less work. We can repeat the above process with this

new sample set Ŝ. The mean work performed in a sample given this new distribution

decreases from the original. Therefore the number of samples n̂d required to achieve

the same amount of work wd increases.

We now use the new distribution Ŝ to create a new CDF CÊ from which we

sample using Eq. ( 5.6). In this case, instead of sampling to determine the amount

of work achieved over a period of time d, we sample as many times as necessary such

that their total work is approximately wd. Due to the modification of the empirical

distribution to model higher noise, if we use the set of uniform samples u(i) to

compute the new amount of work performed over nd samples, ŵd ≤ wd. Therefore

we need to use more samples from U to make ŵd = wd. Assume that we require

n̂d > nd samples to achieve the same amount of work as in the unperturbed case.

This means that in the presence of simulated noise, the time period d increases from

tsnd to tsn̂d.

Using this, we can simulate perturbations as causing an event that required tsnd

time units to now take tsn̂d time units, offsetting the event by ts(n̂d − nd) time

units. Any microbenchmark data that results in a distribution of values, ranging

from operating system perturbations to message transmission latency, can be used

to model perturbations in this manner. In a real system, nearly all values measured

93



Chapter 5. Trace-driven performance sensitivity analysis

by microbenchmarks have a stochastic nature and are best considered to represent

empirical probability distributions of the actual value being measured. Thus this

method for parameterizing perturbations can be applied to capture the stochastic

nature of a general set of sources in order to drive the sampling used for simulations.

5.7 Implementation and example application

The initial implementation of the tools for analyzing traces includes a simple PMPI-

based tracing generation library and an analyzer that inputs these traces, constructs

the message-passing graph, and allows for a very simple parameterization of edge

weight modifications to explore noise and latency variations. The analysis tool uses

the algorithm described in Section 5.5 to connect individual traces for each pro-

cessor with message edges. To avoid the obvious limitations imposed by memory

constraints, the analysis tool uses a windowed approach to building the graph. This

is particularly important to consider given the number of events in a long running,

high processor count job.

Given the set of performance parameters related to noise in the operating system

on processors and the interconnection network connecting them, the analysis tool

processes the graph in the following manner. As the graph is created using sub-

graphs as described in Section 5.4 the δ values that are indicated as edge weights are

generated by sampling the distributions associated with the parameters. The origi-

nal message-passing trace has edge weights on local edges corresponding to the time

intervals observed in the run that generated the trace. Message edges are weighted

zero originally, as the effects of latency and bandwidth are already embedded in the

timings of the actual events that occurred. Simulating additional delays in messaging

is achieved by marking message edges with positive values. As the graph is streamed

through the tool, the max() operators defined in Section 5.4 are applied to modify

94



Chapter 5. Trace-driven performance sensitivity analysis

the times of each node in the graph based on the simulated perturbation deltas added

to both message and local edges. The end result is a final modified timestamp on

the final node for each processor corresponding to the MPI Finalize event.

From this new completion time, we can observe how running times for the overall

program and individual processors increase in the presence of varying degrees of

noise. For example, if we generate a trace on a system with relatively low noise

(such as a bproc cluster as discussed in [69]), we can parameterize the simulation

with performance parameters measured on a system with higher noise to explore

how the program can be expected to perform on a system composed of higher noise

processors.

We do not currently explore the possibility of determining how a trace taken on

a high noise system would run on a system with lower noise. A similar methodology

could be applied by introducing negative edge weights, but this sort of analysis is

being left for future work.

5.7.1 Token ring

A token ring is one of the simplest messaging topologies found in realistic parallel

programs. In n-body simulations, it is occasionally true that the n2 particle inter-

actions must be computed directly instead of using approximation algorithms that

require O(n log n) or O(n) computations. For p processors, it is possible then to

divide up the n particles into sets of n
p

on each processor. Each processor pi then

packages up the set of particles that it “owns”, and passes it to the (i + 1 mod p)th

processor. This processor computes the interactions between its local particles and

those contained in this “token” containing a particle set from some other processor.

This set is then passed on to the next processor as before, and this is repeated p times

until each processor receives the token containing its local particle set, at which time

95



Chapter 5. Trace-driven performance sensitivity analysis

each processor has computed the influence of all n particles on their local set.

Our initial experiments verify the intuitive behavior that one would expect from

a fully synchronous program as this. We performed a traced run on 128 processors

of a ring-based program, and varied the degree of perturbations from none to a mean

of 700 cycles worth of perturbation at 100 cycle increments. The resulting change

in running times increases for each processor that matches the 100 cycle increments

multiplied by the number of traversals of the ring. For example, if the ring was

traversed 10 times with each processor injecting 100 cycles of noise for each message,

the runtime of each processor increased by approximately 10*100*128 cycles.

A study of the simulation used for five different real MPI codes appears in Chap-

ter 6.

5.8 Future work for Chama

The tools we designed and implemented are developed to explore the feasibility and

algorithmic aspects of this method of performance exploration. Two major areas

of work are in need of immediate attention. First, we plan to use existing tracing

libraries that provide a more complete treatment of the MPI specification, in addition

to allowing traces to be generated for other message-passing and shared memory

parallel programming tools. The library we are exploring, KOJAK [51], provides the

EPILOG tracing format and accessor library. The second area of work is to provide

a mechanism to provide a richer set of parameters to the simulation, and maintain

a history of analysis experiments that are performed using our tools. We would also

like to investigate modeling reduced noise from that observed in the traced runs to

explore how performance could be expected to change if the run was performed on

a system with less noise.

96



Chapter 5. Trace-driven performance sensitivity analysis

We have presented an analysis methodology and prototype of a performance

analysis tool driven by message-passing traces, which is scalable and ensures cor-

rectness of the analysis that preserves message ordering true to the trace-generating

run. We discussed how operating system and interconnect parameters can be gener-

ated and integrated into our analysis methodology. We model the application as a

message-passing graph, which is traversed in the same order as the execution order of

the original parallel program. Enforcing no changes in the order of execution ensures

correctness of the model in the presence of blocking and nonblocking message-passing

primitives. Our windowed graph generation technique allows us to analyze traces of

arbitrarily large size on systems with limited memory, thus making it fully scalable.

Since trace-based simulation reflects application behavior on real machines under

internal data states for real runs, the results are expected to be more accurate for a

given processor count than an idealized model at the cost of restricting extrapolation

abilities.

While the tools are still early in development, currently supporting only a sub-

set of blocking, nonblocking and collective MPI primitives, this work introduces a

promising methodology for analyzing parallel program performance taking into ac-

count their actual runtime behavior for real problems. In the future, we also plan

to expand this performance analysis to support more of the MPI-1 primitives, in

addition to other parallel programming paradigms including but not limited to ex-

tensions present in MPI-2 and other distributed memory models such as ARMCI.

These primitives represent what are known as one-sided communications operations.

5.9 Chama simulation engine structure

The simulator development went through two phases. The first implementation

was a Standard ML [48] tool for processing traces and reconstructing the message

97



Chapter 5. Trace-driven performance sensitivity analysis

passing graph. Standard ML was chosen for its richly expressive type system, in

which most of the details regarding data structure representation were handled by

the language itself. Other languages such as C and Java pollute the semantics of

the graph reconstruction in the code with details related to memory management

and data structure maintenance. Its goals were two-fold. First, it was designed to

make it simple to simulate operating system noise and other non-communication

related effects. The second goal of the prototype was to investigate how a trace-

driven simulation could be designed to minimize its specificity to any single message

passing model, and to eliminate the need for global time synchronization. This

prototype proved to be functional and met its goals for a small subset of the MPI-

1 standard, but was poorly engineered with respect to extensibility. Furthermore,

although functional languages can achieve high performance, doing so is difficult

and can make code difficult to read and maintain. Finally, the lack of community

acceptance of languages not commonly used would hinder the adoption of the tool

by new users.

After writing and experimenting with the initial version of the tool, a second

version was written using lessons-learned from the original. This new version has

proven to be easier to maintain and extend, both in terms of the communication

semantics that are being modeled and the manner by which simulated perturbations

are introduced and then tracked. It implements most primitives required for collec-

tive and two-sided message passing, the choice of which was driven by the needs of

a set of MPI-based applications of interest. The set of MPI operations supported

both by the tracing library and the simulator are shown in Table 5.1. Purely local

operations such as MPI Abort and the MPI Type family are not necessary to simulate,

and are implicitly supported.

Chama is a single threaded, event driven discrete event simulator that uses the

message-passing graph formalism to model noise propagation. It processes all events

98



Chapter 5. Trace-driven performance sensitivity analysis

MPI Allgather MPI Allgatherv MPI Allreduce

MPI Alltoall MPI Barrier MPI Bcast

MPI Bsend MPI Comm create MPI Comm dup

MPI Comm free MPI Comm group MPI Comm rank

MPI Comm size MPI Comm split MPI Finalize

MPI Gather MPI Gatherv MPI Group incl

MPI Group intersection MPI Group range incl MPI Ibsend

MPI Init MPI Iprobe MPI Irecv

MPI Isend MPI Issend MPI Probe

MPI Recv MPI Reduce MPI Scatter

MPI Scatterv MPI Send MPI Sendrecv

MPI Ssend MPI Wait MPI Waitall

Table 5.1: MPI message passing primitives supported by the simulator and tracing
library.

in the order in which they occurred, maintaining the cross-process relationships that

occurred and manifested as blocking in the original programs that were traced. These

relationships correspond to the cross-process edges in the message passing graph, not

only to represent the blocking relationship of events that occurred, but to capture

the path by which perturbations would propagate at simulation time.

The simulator is based on decomposing a parallel program into a set of entities

that represent the relevant local state on each process, and the global state that

groups of processes share.

• Process: A process has a local clock that advances as events complete and

simulated perturbations are introduced. It also contains a set of messages that

it has issued either synchronously or asynchronously to other processes, and

a set of messages that it is expecting from other processes. It also may be in

a blocked state that requires another one or more processes to advance their

state in such a way to allow the process to proceed. A process also has a

set of contexts in which it coexists with other processes, manifested in this

99



Chapter 5. Trace-driven performance sensitivity analysis

implementation as MPI communicators and process groups.

• Communicators: The notion of a communicator is borrowed from MPI, al-

though in the simulator it can be used to represent similar logical constructs

found in other parallel programming models. A communicator is simply a set

of processes that can participate in collective operations and exchange pairwise

messages. Often a parallel programmer will decompose a large set of processes

into smaller subsets that will perform work as collective entities. This com-

ponent of the simulator maintains the state necessary to capture the behavior

of these groups in such a way that does not require all processes in the entire

parallel program to exist in a single global group.

• Groups: The representation of process groups is separated from the com-

municator that collective events occur within. This allows the set-theoretic

operations used to create process groups to be separated from the structure

that implements the communication operations. This separation of groups

from communicators is inspired by the same separation present in MPI, but

is applicable in other message-passing models that also employ logical process

groupings. The communicator and group structures also are used to provide a

rank mapping for a process from the logical processes groups to the physical

process itself.

• Communicator Contexts: A communicator context is used by a process as

a translator between the local process view of a process group and the global

set of processes. Each process within a group has an independent namespace

for identifying process groups, and operations on the global set require a trans-

lation from the local to global namespace. This is due to the fact that a subset

of processes may collectively create a new process group GA not seen by other

processes. If a different subset of processes create another process group GB

that includes processes also involved in GA, then the identifier for this group

100



Chapter 5. Trace-driven performance sensitivity analysis

on GB \ GA will differ from that on the processes in GB \ GA
c.

• Events: The simulator is driven by events that were generated by runs of

real parallel programs. An event represents a phase of interaction with other

processes during runtime. The time between events is time spent performing

purely local work by a process. For example, a process may generate a receive

event followed by a send event. Between these events, the process may be

computing based on the data received to generate the new data that is then

sent later. Events have time and data related information, and serve as the

mechanism by which processes and communicators change state. They also

contain event-specific metadata describing the interactions with other processes

that the event represents.

• Perturbers: In its basic form, the simulator simply executes a sequence of

events from parallel event streams in the order that they occurred. The goal

of the simulator is to use this stream in conjunction with a parameterized

perturbation injector that artificially induces delays in event start times or

completion times based on the performance parameters to study. Perturbers

within the simulation are present during event processing on processes and

communicators, and modify the occurrence times and durations of events.

Other structures exist within the simulator for tasks such as trace I/O, statis-

tical bookkeeping, and sampling of random variables of various distributions. The

perturbers are used to induce simulated perturbations in timings for modeling pa-

rameters such as operating system interference.

Tracing overhead

In any profiling or tracing study, without external hardware that monitors the mem-

ory bus or interconnection network, there is some level of perturbation induced by

101



Chapter 5. Trace-driven performance sensitivity analysis

the measurement software itself. This is due to resource sharing of the measurement

tool with that which is being measured. The data gathered during the execution

of an instrumented program only approximates the behavior of the program on its

own. Care was taken in constructing the PMPI-based tracing library to minimize this

perturbation, specifically in terms of memory consumption and trace I/O overhead.

Each MPI call made by the user program was first passed through a tracing library

wrapper, which logged all necessary data about the event, before being handed off

to the MPI implementation. The MPI standard specifies a well defined interface

for such wrappers, known as the PMPI interface. Each PMPI wrapper had a form

similar to that shown in Fig. 5.7 for the MPI Send subroutine.

The “LOG” macros index into a trace buffer to store specific information into

the structure representing the current trace event. This buffer is composed of 8K

event entries, each of which requiring 108 bytes of storage. The resulting trace buffer

size on a 32-bit Pentium 4 based system is approximately 885 kilobytes. The final

trace buffer advance call simply increments the position in this trace buffer. If the

number of events exceeds the buffer size, the data is written to a storage device

and the current event pointer in the buffer is reset. Tuning the buffer size has two

tradeoffs. By increasing the size of the buffer, the frequency of highly-perturbing

I/O operations is reduced. On the other hand, increasing this buffer size consumes

memory that could be otherwise used by the application, and introduces potential

cache effects that may degrade application performance.

Future versions of this tool will use more mature tracing libraries. The initial

implementation chose to use a custom trace format to avoid the need for global clock

synchronization in the trace post-processing and to use a trace format that was most

efficient for implementing with the simulator design. A text-based format is signif-

icantly larger than necessary, but has the benefit of easy readability for debugging

during the development process. Moving to existing trace formats will not only al-

102



Chapter 5. Trace-driven performance sensitivity analysis

int MPI_Send(void *buffer, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm) {

int retval;

LOG_ETYPE(EVENT_SEND);

LOG_COMM(comm);

LOG_ORANK(dest);

LOG_SIZE(count);

LOG_TAG(tag);

LOG_DTYPE(datatype);

LOG_STIME();

retval = PMPI_Send(buffer, count, datatype, dest, tag, comm);

LOG_FTIME();

advance_tracebuffer();

return retval;

}

Figure 5.7: A PMPI implementation of the MPI Send wrapper function.

low traces to be smaller, but will allow analysis on a single application trace with

both the Chama tool described in this thesis and other tools used in the parallel

computing community.

5.9.1 Message passing graph construction

The message passing graph is constructed in a memory efficient, single pass fashion

with delay injection and propagation occurring as it is traversed. The memory re-

quirements to simply reconstruct and walk the graph are O(p) for a p processor trace.

103



Chapter 5. Trace-driven performance sensitivity analysis

Additional memory is required by optional statistical trackers that record per-event

or per-event-class (such as MPI Allreduce collectives) data. The goal of low-memory

requirements is to facilitate simulation-based studies of very large processor count

programs for massively parallel systems such as the IBM BG/L machine or large

scale ASCI clusters.

Consider a p processor program containing nc process groups and communicators

at runtime. One instance of the Process object is created for each processor, and one

instance of the Communicator and Group object is created for each communicator

and process group. For each process, a CommunicatorContext object is created for

all communicators known to the process either through membership or communicator

constructor operations. This object provides the required mapping from the local

process namespace for communicator IDs to the global communicators that logically

bind process groups together. Each CommunicatorContext maintains five indexed

sets for bookkeeping to reconstruct pairwise messaging events. They are as follows.

1. A set of p − 1 “mailboxes”, corresponding to sets of pairwise message events

from each other process that have not yet been matched with a local event.

2. A set of p − 1 sets of “in-flight” messages corresponding to pairwise messages

originating from the local process that have not yet been consumed by their

matched events on remote processors.

3. A set of outstanding requests, corresponding to all requests (MPI Request in-

stances) that have been posted by asynchronous messaging calls, but not yet

fulfilled by the remote process.

4. A similar set of requests indexed by remote process index.

5. A set of fulfilled requests. Each fulfilled request is a pair containing the original

request that was posted, and the remote event that fulfilled it.

104



Chapter 5. Trace-driven performance sensitivity analysis

Each of these structures can potentially require O(p2) space, which would be

prohibitive for large scale process counts. This would occur if each process initiated

a large number of asynchronous messages to all other processes. Fortunately, this

is a highly unlikely situation in practice. The reason for this is that operations

with this sort of logical all-processors message pattern are implemented efficiently

using collectives. Users generally do not, and should not, implement these operations

themselves.

Collectives are expressed over process groups in MPI via the MPI Comm structure.

They include operations such as all-to-all data exchanges, implementation of reduc-

tion trees, data broadcasts, and synchronization barriers. Collective events are either

rooted (such as an MPI Bcast or MPI Reduce) or not (such as an MPI Allreduce).

The Communicator object contains data structures for implementing collective op-

erations, each requiring O(p) space.

1. A vector of Process instances that have not yet reached a collective that is

pending. Those processes that are not in this list have reached the collective

and are blocked from proceeding.

2. A mapping of Process instances to the CollectiveEvent object that they

have reached.

3. A set of Process instances that have reached a rooted collective before the

root, and are blocked until the root process reaches the collective.

The simulation reads events from processes in a round-robin fashion, skipping

those that are blocked pending completion of events on other processes. No global

clock synchronization within the traces is required, as the blocking semantics defined

by the MPI standard alone are sufficient to reconstruct the message passing graph

given the communicator and process state described above. The only modification to

105



Chapter 5. Trace-driven performance sensitivity analysis

the trace files that is required is the resolution of non-deterministic operations into

the deterministic decisions that were realized at runtime. These correspond to the

MPI ANY TAG and MPI ANY SOURCE options available for pairwise receive operations.

Issues due to these parameters are discussed in detail in Section 5.10.

5.10 Limitations

Trace-based simulation and analysis has both strengths and weaknesses. It is clearly

desirable over idealized models in some cases because it gives a representation of

true program behavior under the dynamic data conditions that occur during execu-

tion. These data conditions result in unique control flow and resource consumption

patterns that are difficult to distill into a simple, generalized model of the program.

On the other hand, parallel programs can take advantage of some level of non-

determinism to increase performance. Unfortunately, this non-determinism limits

what kind of result can be derived from traces of such programs.

There are two primary limitations of trace-based tools that are discussed here.

First, they are not appropriate for scalability studies. Second, they can provide

only limited information about the performance sensitivity of programs that rely on

non-deterministic control flow. These limitations are perfectly acceptable, as there

exist other tools and analysis methods that are better suited to answering questions

that trace-based tools cannot. No tool or method can answer every question, so a

performance analyst must be prepared to apply a suite such that each question of

interest is answered using the appropriate method.

106



Chapter 5. Trace-driven performance sensitivity analysis

5.10.1 Scalability studies

The most common question encountered during the lifetime of this work was how

well it can predict the runtime of a program that was executed and traced with p

processors on 2p or 10p processes. The short answer is that it cannot, and never

will, because it is not a tool for that purpose. It is related though. Given a tool

for analyzing scalability, one can determine a set of predicted runtimes for a parallel

program on a sequence of processor counts. The tool described here allows one to ask,

for each of those processor counts, to what degree the runtime will vary given a trace

of the program execution on the given processor count. A sequence of experiments

that are used to extrapolate scalability can also be used to extrapolate a sensitivity

envelope, providing a disciplined estimate of the uncertainty in the predicted, scaled

runtimes.

The reason trace-based methods are not appropriate for scalability studies of all

but the most simple parallel programs is that the messaging pattern that occurs

within a parallel program is very often a direct function of the processor count.

Furthermore, given a messaging pattern, the amount of work and manner by which

data flows between processors can also be a function of processor count.

It is not impossible though to use traces to motivate scalability studies. For ex-

ample, given a trace of a p processor run, it is feasible for the 2p case to essentially

be composed of the p processor trace data duplicated, with a small number of mes-

sages introduced at regular intervals representing the communication between the

two processor sets. If the algorithm is using a tree-based messaging topology, the

messaging pattern for the 2p case may be inferred (most likely with some level of

human intervention) from the p and p/2 trace data. The p/2 traces may be derived

from the p trace without requiring an additional tracing run at the lower processor

count.

107



Chapter 5. Trace-driven performance sensitivity analysis

Others have explored the possibility of trace-driven scalability studies, including

the Extrap project from the University of Oregon [63, 50].

5.10.2 Non-determinism

It is quite possible, and occasionally desirable from a performance perspective, to

allow some amount of non-deterministic execution to occur within a parallel program.

The basis of this is that one process in a parallel program will occasionally reach a

state where it requires data to continue, and this data can be provided by one or

more of its parallel peers. Many algorithms specify precisely which processor must

provide this data due to data distribution and dependency structure. The successive

over-relaxation algorithm is a simple example of this. In some cases though, there is

no explicit single processor that can provide data. If a set of processors can provide

equivalently useful data sets to the processor that requires data, then choosing the

first to arrive will reduce the idle time spent waiting to proceed. Similarly, if a

processor must process data from each of a set of processors without requiring any

ordering of the data sets, then it would be wise to iteratively take data as it becomes

available, in the order that it becomes available.

The problem with this sort of non-deterministic messaging pattern is that each

run may produce different traces as data conditions within the program change,

or interference from outside the program affects performance on each processor. A

processor may have a variety of control flow patterns that depend on which process

it received data from, or similarly, whether or not it was the process from which the

non-deterministic receive was fulfilled. Due to this potential change in control flow

based on which message source was used at runtime to fulfill the non-deterministic

receive, the messaging pattern that follows it may also change.

A trace only can truly represent one instance of the program behavior in which

108



Chapter 5. Trace-driven performance sensitivity analysis

each non-deterministic operation was executed with precisely one of the possible sets

of parameters. Each non-deterministic choice was collapsed into a single deterministic

choice at runtime.

Implementation details

Message passing operations of this form are provided by the MPI standard via the

MPI ANY SOURCE and MPI ANY TAG constants that can be used as the source or mes-

sage tag parameters to the MPI Recv and MPI Irecv operations. The program is able

to determine which source fulfilled the receive operation at runtime by examining

the contents of the MPI Status after the blocking receive or wait operation (in the

case of Irecv) completes.

The trace file must allow post-mortem analysis tools to determine which message

source was used to fulfill the receive operations. In the case of a blocking receive,

this is easy, as the status field that is populated upon completion of the call can

be immediately read and traced. Non-blocking receives pose a small complication.

Consider the following code sequence in Fig. 5.8.

The peer process used to fulfill the non-blocking receive operation is not known

until the blocking wait executes to stop execution until the pending receive completes.

Only after the wait returns can the process determine what source was used to fulfill

the receive. At runtime, the tracing library should not attempt to backtrack and

make sure that the receive event is annotated with the precise source and tag that

fulfilled it. This would require far too much memory and computational impact on

the user code, inducing more perturbations than necessary into the run and causing

the trace to be even less representative of the code itself. It is quite simple to execute

a post-mortem processing step (that requires one pass only over the trace files) that

resolves the non-deterministic receive events with the deterministic decisions that

109



Chapter 5. Trace-driven performance sensitivity analysis

MPI_Request req;

MPI_Irecv(buf,MPI_ANY_SOURCE,MPI_ANY_TAG,&req);

/*

* code unrelated to the Irecv operation

* ...

*/

MPI_Wait(&req);

Figure 5.8: An illustration of non-determinism that can be implemented using pair-
wise receives.

were made at runtime. A small tool to perform this post-processing is provided with

the PMPI tracing library used in this work.

110



Chapter 6

Experimental studies

To revisit the hypothesis underlying this work, the goal is to define a methodology for

rigorously measuring relevant performance characteristics of a parallel machine, and

use these measurements to drive analysis of application codes. The previous chapters

outline both an example performance measurement technique for inferring operating

system interference as experienced by applications, and a trace-driven simulation

technique for examining the sensitivity of applications to runtime perturbations.

In this chapter the techniques described in earlier chapters are applied to study

applications and their performance sensitivity to performance parameters such as

network performance and operating system noise. Results are also given showing the

use of the FTQ microbenchmark. Data is also shown with respect to the cache effects

seen by FTQ that relate to self-interference within the microbenchmark data. The

applications are chosen to represent real workloads found on real parallel systems.

The applications of interest are taken from multiple sources to represent work-

loads of importance to different scientific computing communities. Sweep3d [36] is

an open benchmark that represents a typical kernel found in many scientific ap-

plications. Three codes from the NAS parallel benchmark suite [5] are chosen to

111



Chapter 6. Experimental studies

represent simple kernels that exhibit a wider variety of structure than the simple

Sweep3d program. The ASCI FLASH [23] code is an open, university developed

code that represents a full application that targets large scale ASCI computing plat-

forms. These codes are also chosen due to their open availability without export

restrictions to maximize potential for other researchers to reproduce or extend the

results presented here.

6.1 Simulation

The experimentation presented in this chapter is performed using a trace driven

simulator based on the work presented in the previous chapter. The parameter that

is focused on for modeling and simulation is operating system interference. Before

demonstrating the functionality of the simulator, we will examine the performance

of the simulator itself. This is important from a user perspective because not only

must the tool provide a result that one can believe, but it must do so in a reasonable

amount of time.

6.1.1 Simulator performance

We test the Chama simulator for its own performance using traces for various pro-

cessor counts and application sources. It must be able to process a single trace and

produce output in a reasonable amount of time, preferably on the order of minutes

for a single combination of perturbation parameters. We profile Chama using the

standard Java profiling interface accessed from the NetBeans IDE. The simulator

was not optimized in any way, and relied solely on data structures and algorithms

provided by the Java standard library.

The runtime of the simulator for the largest trace data, a 1.6 million event trace

112



Chapter 6. Experimental studies

of a 32 processor run of the ASCI FLASH code, was 3.5 minutes on a 1.5GHz

Pentium M laptop with 1.5 GBytes of main memory. An identical run performed on

a 2GHz AMD Sempron 3300+ based workstation with 512 MBytes of main memory

completed in approximately the same amount of time. Other traces of shorter length

from the other codes examined took less time. The runtime for a simulation run is

most dependent on the number of events being simulated, and less so on the sort of

events being simulated.

The event types that are simulated have varying complexity of implementation.

Basic point to point messages require O(1) time to handle, with O(n) time to identify

counterparts on remote processors where n is the number of messages that have been

posted and not fulfilled at any given time. The value of n is generally small, and only

increases if a large number of asynchronous messages are posted between a pair of

processors before their counterparts are reached. In the FLASH code, n was between

1 and 5.

Collective events require lookups in data structures to determine the state of the

p processes participating in a single operation. The Chama tool chooses to spend

memory in the interest of reduced time complexity in this case. By using tables

indexed by the processor rank, lookups require O(p) space and take O(1) time. The

blocking semantics of collectives means that only one collective event is pending at

any given time, although cases can be created where multiple rooted collectives can

be in progress at once. This was not observed in any of the traces that were used

for development and testing, and may even be prohibited by the underlying MPI

implementation.

The results of profiling on all of the test cases showed that the primary perfor-

mance bottleneck within the simulator was in the trace I/O interface. Most of the

time during execution was spent in one subroutine that reads single values off of

the I/O stream to populate the fields of the SimEvent object used by the simulator.

113



Chapter 6. Experimental studies

The trace format employed by Chama at the current time is very space inefficient,

and requires ASCII text to be read and converted into the corresponding integer or

double precision value. This penalty was paid in the interest of human readability

during development, and can be easily remedied by adopting a more space efficient

binary format that requires less parsing and type conversion at runtime.

Finally, in performing a study of the performance change as perturbation param-

eters are varied, the simulator was run in a batch mode on a single workstation. For

each noise level (corresponding to the probability of a perturbation in a period of sim-

ulated time), a small (5-10) number of runs were performed to ensure that the results

were not larger or smaller than expected due to specific choices of pseudo-random

number generator seed. For 20 noise levels with 5 runs each, this corresponded to

100 runs of the code. On this single workstation, this required approximately 6

hours of computational time. Each run is completely independent of each other, so

this time can be drastically reduced by utilizing multiple workstations working in

parallel. A laptop and two workstations could easily perform a similar study in part

of an afternoon with current capability systems and the unoptimized Chama code.

Optimization within Chama will easily reduce this time significantly. The times re-

quired for each set of simulation runs used to generate the data presented later in

this chapter are shown in Table 6.1.

6.2 FTQ results

This section presents results for the FTQ microbenchmark in two areas. First, we

will present the results of profiling FTQ for hardware counter data in order to illus-

trate the cache effects that FTQ experiences that manifest as self-interference in the

FTQ output data. Second, we will show the output of FTQ under different inter-

ference levels to illustrate how the interference is revealed. We also demonstrate the

114



Chapter 6. Experimental studies

Trace input Noise levels Runs/level Time (min.)

24 CPU Sweep3D 90 20 26
24 CPU Sweep3D (1) 45 10 6

24 CPU FLASH 45 20 497
24 CPU FLASH (1) 45 5 125
16 CPU NAS LU 45 20 252

16 CPU NAS LU (1) 45 5 63
16 CPU NAS CG 90 20 91

16 CPU NAS CG (1) 45 5 11
16 CPU NAS MG 90 20 39

16 CPU NAS MG (1) 45 5 5

Table 6.1: Simulation run times for different parameter studies. Rows labeled (1)
indicate simulations of single process noise.

conversion of measured FTQ data into empirical distributions suitable for sampling.

6.2.1 Cache effects and self-interference

The experiments in this section are performed on an AMD Sempron 3300+ based

workstation. This configuration features a 64Kb L1 instruction cache, a 64Kb L1

data cache, and a 128Kb L2 cache. Each cache uses 64 byte lines. The measurements

are taken using the PAPI version 3.2.1 hardware counter accessor library using a

version 2.6.11 Linux kernel patched with the PAPI provided 2.6.x version of the

perfctrs library. The FTQ code is instrumented using the TAU profiling library

version 2.15.2, with the PAPI counters for data and instruction misses for both the

L1 and L2 caches.

Instrumentation is inserted to capture data within three portions of the FTQ

code. The main region, core, encapsulates the entire main loop that included the

sampling loop, loop, and the two array operations used to save both the sample work

count and the time elapsed for the sample (data). In the code shown in Fig. 4.4, the

115



Chapter 6. Experimental studies

Core Loop Data

L1 ICM 6013 1515 1502
L1 DCM 127 47 1308
L2 ICM 59 9 2
L2 DCM 58 3 5

Table 6.2: Cache miss statistics for a sampling interval of 220 cycles over 5000 samples

Core Loop Data

L1 ICM 12030 3038 3004
L1 DCM 201 107 2369
L2 ICM 142 33 10
L2 DCM 60 5 8

Table 6.3: Cache miss statistics for a sampling interval of 220 cycles over 10000
samples

core region spans lines 3 through 17. The loop section spans lines 7 through 10, and

the data section spans lines 12 and 13. The profile data represents exclusive counts.

This means that the core data includes counts that are not contained within the

loop or data regions within the main region. Tables 6.2 and 6.3 show the results of

the profile for two different parameterizations of FTQ.

Given that we wish to use FTQ to probe for operating system perturbations that

occur at time scales significantly longer than processor cycles, FTQ must execute

a very large number of samples to reveal them. The Nyquist sampling theorem

defines the number of samples required at a specified sampling rate to allow for

reconstruction of periodic features of the signal from sampled data. Thus the size of

the sample data storage will be very large, and will easily exceed the cache line size

of both the L1 and L2 caches in even the most capable modern systems.

Fortunately, FTQ fills the sample data storage in a regular linear pattern, which

116



Chapter 6. Experimental studies

means that cache misses will occur at highly regular and predictable intervals given

a specific hardware configuration. As we can see from the data, the cache miss rates

indicate a high correlation between the number of samples taken and the precise

region of code. In the first case with 5000 samples, we observe 1308 L1 data cache

misses, corresponding to a cache miss over 26.16% of the samples. This is approxi-

mately one quarter of the time. This makes perfect sense, due to the 64 byte cache

lines on the L1 cache. If each iteration requires two double precision (8 bytes each)

values to be stored, we would expect four iterations to fill a cache line, since this

corresponds to eight double precision values, or 64 bytes. The first iteration from

each of these blocks of four would induce the miss to load the cache line, hence an

expected miss rate of approximately 25%. Similarly, for the larger iteration count of

10000 samples, this trend continues with 23.69% of the samples observed to induce

an L1 data cache miss.

6.2.2 FTQ data

In this section, data are presented from FTQ to illustrate how it is able to clearly

differentiate varying levels of noise within benchmarked systems. Data are presented

from two perspectives. First, data are shown under different noise levels to illustrate

the change in the raw FTQ output that provides quantitative evidence of both the

existence and magnitude of noise. Second, data are shown for a fixed noise level

with varying granularity work quanta within FTQ. This illustrates the importance

of tuning the work quantum granularity for platforms being measured. These results

were presented at the SIAM Parallel Processing for Scientific Computing conference

in February, 2006.

117



Chapter 6. Experimental studies

FTQ under varying noise levels

The data shown in Fig. 6.1 demonstrate the data produced under varying noise

levels on an IBM X41 laptop. The use of a workstation platform to illustrate noise

allows a wide spectrum of noise levels to be explored. Three different cases are

shown. The first is measured before the operating system has started any daemons

or other processes, and shows the lowest noise level. This is a baseline measurement

as described in Section 4.6. All samples achieve approximately equal amounts of work

within the microbenchmark, and perturbations are infrequent. The second case is

measured after daemons have started and the system is in a state where user-space

processes can execute. Perturbations are more frequent, and the variance in the

work achieved per sample increases. Finally, the last case illustrates the worst-case

scenario, where not only operating system tasks are executing, but processes related

to the GNOME desktop environment are also running and competing for resources.

The noise is very high, and the variance seen in FTQ work achieved in each sample

is very large.

Each plot of the raw data is shown on equal axes to illustrate the relative dif-

ferences in the work achieved per sample. Figure 6.1 also shows the cepstrum cor-

responding with each FTQ time series for the first 3000 quefrencies. No additional

processing has been performed on the data other than applying a basic Hamming

filter to remove boundary effects in the spectrum due to finite sample lengths be-

fore applying the Fourier transform. As we can see, the number of peaks above

the noise floor increases as the level of interference in the system is increased. The

pre-init case shown in the top two plots shows only two significant spikes in the

cepstrum. The second row of plots shows that the number of peaks increases, as

does the amplitude of their values.

The data shows some degree of nonstationarity, as the raw data (on the left)

118



Chapter 6. Experimental studies

1 2 3 4 5

x 10
4

500

1000

1500

2000
Boot before init.

Sample

W
or

k

1 2 3 4 5

x 10
4

0

500

1000

1500

2000
Console post boot.

Sample

W
or

k

1 2 3 4 5

x 10
4

0

500

1000

1500

2000
GNOME session

Sample

W
or

k

0 1000 2000 3000
0

1000

2000

3000
Cepstrum boot before init.

Quefrency

M
ag

ni
tu

de

0 1000 2000 3000
0

1000

2000

3000
Cepstrum console post boot.

Quefrency

M
ag

ni
tu

de

0 1000 2000 3000
0

1000

2000

3000
Cepstrum GNOME session

Quefrency

M
ag

ni
tu

de

Figure 6.1: Three FTQ time series taken on an X41 laptop under varying noise
conditions.

has more perturbations at early time than late. This early time difference in the

data is also apparent in the final row of data, and can be attributed to operating

system scheduler adaptation as the process executes over time. The final data set

shows a larger number of peaks than the previous cases, with peaks reaching a higher

amplitude.

This experiment shows that FTQ data clearly differentiates between noise levels,

both in the raw data and the cepstral representation. In Section 5.6.3, it is proposed

that FTQ data can be used to form empirical distribution functions (EDFs) for

sampling in order to drive the Chama simulator noise studies. Examining the EDF

corresponding to each of the time series shown in Fig. 6.1, we can see the most

119



Chapter 6. Experimental studies

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

Boot data

Interference level

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

Console data

Interference level

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

GNOME data

Interference level

P
ro

ba
bi

lit
y

Figure 6.2: Three empirical distribution functions derived from data in Fig. 6.1.

compelling evidence that the stochastic nature of the noise present in each sample

varies drastically. The EDFs for each data set are shown in Fig. 6.2.

The EDFs show that as noise increases, the probability of a low impact pertur-

bation decreases. The pre-boot measurement shows that most samples correspond

to low perturbation events, while the highest noise case shows that moderate to high

impact perturbations are equally likely as low impact perturbations. Furthermore,

these give additional evidence that to accurately model the noise within a system,

sampling from an idealized distribution function is inappropriate.

120



Chapter 6. Experimental studies

FTQ work quantum variation

Due to the small number of instructions that comprise the FTQ benchmark, it is

easy to allow artifacts from processor scheduling and instruction mix to overwhelm

the coarser-grained noise that FTQ seeks to measure. The effect of varying the work

quantum granularity of FTQ is demonstrated in this section, and was introduced

earlier in Section 4.4. In these experiments, the level of noise was fixed, correspond-

ing to the post-boot environment on an X41 laptop without any GUI environment

started. This represents a relatively low noise, full operating system configuration.

Four granularities of FTQ work quantum were tested: one integer increment opera-

tion, 15, 31, and 63 integer operations. The raw FTQ data from these experiments

is shown in Fig. 6.3.

The data illustrates two important effects from varying the work quantum granu-

larity. First, as the work quantum becomes coarser, the number that can be executed

in a fixed sampling period decreases. Furthermore, this decrease is approximately

proportional to the amount the workload increases. For a single increment work

quantum, the mean work per sample is approximately 15167 units. For a 15 op-

erations per quantum, this mean work per sample decreases to 5267 units, with a

similar decrease to 3147 units for 31 operations and 1753 units for 63 operations.

Most importantly, the variance of each time series decreases drastically, while pre-

serving significant perturbations as visible downward spikes in the raw data. The

standard deviation (or
√

variance) decreases from 343 units in the single instruction

case progressively through values of 49, 39, and 19 units as the work quantum gran-

ularity increases. By coarsening the work quantum and increasing the proportion of

work instructions per sample versus control flow instructions, we are able to smooth

out self-interference due to low level hardware effects within the processor.

121



Chapter 6. Experimental studies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5000

10000

15000

1 Instruction

Sample

W
or

k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5000

10000

15000

15 Instructions

Sample

W
or

k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5000

10000

15000

31 Instructions

Sample

W
or

k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5000

10000

15000

63 Instructions

Sample

W
or

k

Figure 6.3: Four FTQ time series representing increasing granularity work quanta.

122



Chapter 6. Experimental studies

It must be noted that coarsening requires sacrificing fidelity in the data. As the

work quantum increases in granularity, the ability to differentiate large perturbations

from small ones decreases. All perturbations less than or equal to the scale of a single

work quantum are indistinguishable from each other. This sacrifice is acceptable in

the context of this work. We are simply seeking a method to identify periodic, high-

impact perturbations due to preemption for other operating system tasks. We do

not currently wish to identify the magnitude of these perturbations.

6.3 Experimental setup for Chama studies

The traces used to drive the Chama studies were measured on a 24 processor, 12 node

cluster of dual processor, 2.8Ghz Pentium 4 Xeon based nodes connected with Gigabit

Ethernet. The codes were compiled with the Intel C and Fortran compiler version

8.1. The OpenMPI version 1.0.1 implementation of MPI was used for message-

passing support. Traces were taken with the PMPI-based tracing library provided

with Chama.

Each code was executed once to completion under normal conditions using the

provided test inputs used for benchmarking and testing the codes. The FLASH and

Sweep3d codes were executed using 24 processors, and the NAS codes were executed

in their Class B configuration on 16 processors due to the constraint that a power of

two processors were required.

We ran the Chama simulator with two parameter settings. The first configuration

is provided a probability of perturbation on each processor over a period of 10ms

(or 28,000,000 ticks). We varied these probabilities from 0.0 to 0.9 by increments of

0.02. This configuration represents the situation where noise is increased in intensity

across the entire cluster, as would be the case in a homogeneous configuration of

node operating systems. The second configuration is similar, but only one node

123



Chapter 6. Experimental studies

experiences perturbations. This represents the case where a single node in the cluster

is misconfigured.

Each data point represents an average value for a set of simulation runs with

identical parameters and inputs, varying only the random number seed used to sam-

ple for simulated delay injection. This set is composed of 20 simulation runs for each

probability level and simulation code. With the original Chama code, this simulation

count is chosen based on the simulation performance. Ideally, after optimization of

the simulation it will be possible to increase the run count and better capture the

expected statistics (mean and variance) for a single parameter set. The design of a

simulation-based experiment must take into account these sorts of statistical factors

in order to generate sound results with a reasonable number of simulation runs [42].

The hypothesis that this experimental study tests has two components.

1. As the probability of noise increases, the amount of noise that cannot be ab-

sorbed by the program increases.

2. The increase in runtime experienced by programs should be higher when noise

is present on all nodes, versus a single node. Furthermore, codes that rely

solely on synchronous operations will experience similar slowdowns for both

the whole cluster and single node perturbation cases.

Details that are specific to each code are provided in the corresponding sections

below.

6.3.1 Delay propagation details

Delay is propagated using the methods described in Chapter 5. The exact manner

by which delay is propagated must be discussed, as other methods can be used which

124



Chapter 6. Experimental studies

are equally valid under differing sets of assumptions. In this study, the duration of

events was not modified in all but the clearest case of a paired set of synchronous

point-to-point message transfer operations. If an MPI Send operation took a specific

amount of time, this duration was not modified if the receive was asynchronous.

The reason for this is that the duration of the paired receive and corresponding

MPI Wait call contains no information about the proportion of time spent idle in

the send waiting for the receive to be posted versus the amount of time required

to transfer the message. The only time this inference is reasonable is within the

paired MPI Send/MPI Recv operations, where the minimum duration of the pair can

be assumed to be the time for the transfer.

A more aggressive set of assumptions can use knowledge of message sizes and the

time required for a fixed amount of data to transfer in order to shrink operations and

better absorb injected delay. Such details may also depend on the MPI implementa-

tion used by the application. Although Chama contains information for each message

related to the precise message size, no information is currently integrated into the de-

lay propagation scheme that allows Chama to use this to compute the expected time

for a message versus the observed and simulated times in order to recompute event

durations. The codes that are highly dependent on mixed syncronous/asynchronous

messages may experience better noise absorption than presented here given a more

sophisticated delay propagation model.

6.4 Sweep3d

The Sweep3d benchmark [36] was the simplest code examined due to its small size

and low number of message passing primitives used. A trace of the code reveals that

it alternates between phases of synchronous two-sided communications and collective

operations. Table 6.4 lists the MPI operations used by the Sweep3d code. Due to its

125



Chapter 6. Experimental studies

MPI Operation Percentage Avg. Exclusive Time (ticks)

MPI Allreduce 1.04 11773650
MPI Barrier 0.10 6777461
MPI Bcast 0.13 9076706
MPI Recv 49.37 853294
MPI Send 49.37 190542

Table 6.4: MPI operations used by Sweep3d

dependence on purely synchronous operations, it is easy to hypothesize before sim-

ulation that any noise injected into the system would result in increases in runtime.

Without asynchronous sends or receives traditionally used to make an application

latency or perturbation tolerant, any perturbation is likely to be seen in the over-

all runtime unless the processors are not load balanced, and the perturbations are

absorbed by idle periods spent by some processors at collective operations (refer to

Fig. 1.1 for an illustration of this arrival time skew issue).

The trace data was taken for a 24 processor run using the 50x50x50 input deck

provided with the Sweep3d code download package using a 6 by 4 processor grid.

As we can see in Fig. 6.4, the sweep code is able to tolerate delay at the full

range of magnitudes equivalently. Furthermore, the sweep code can absorb delay

better if it originates from a single process than uniformly over all processes. Delay

that is induced across all compute nodes cannot be completely absorbed before it

propagates across all processes. Single node delay can be absorbed, although as the

rate of delay increases, it becomes more difficult for single processor delays to be

absorbed before propagating across the entire program.

126



Chapter 6. Experimental studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sweep3D

Interference level

A
bs

or
pt

io
n 

ra
tio

 

 
24 CPU
1 CPU

Figure 6.4: Absorption ratio for a 24 CPU Sweep3d trace under increasing interfer-
ence levels.

6.5 The NAS Parallel Benchmarks

Three codes from the MPI implementation of the NAS parallel benchmark suite

version 3.2 were chosen for study: the CG (Conjugate Gradient), LU (LU decom-

position based CFD), and MG (Multigrid) benchmarks. Each was compiled in its

Class B configuration for 16 CPUs. The MPI operation mix varied between these

codes from predominantly synchronous point-to-point in the LU case, to a mix of

synchronous sends with asynchronous receives in the MG and CG case. Collectives

formed a small fraction of the operations executed in each case. The operation mix

for all three codes is shown in Table 6.5.

In Fig. 6.5, the ratio of noise not absorbed versus total noise experienced is shown

for each code. The MG and CG codes do not absorb noise well at any level, regardless

127



Chapter 6. Experimental studies

MPI Operation Percentage Avg. Exclusive Time (ticks)

CG MPI Barrier <0.01 8949093
MPI Irecv 33.33 46361
MPI Send 33.33 4703508
MPI Wait 33.33 4658358

MG MPI Allreduce 1.03 14502693
MPI Barrier 0.07 38458045
MPI Bcast 0.07 15341284
MPI Irecv 32.94 41886
MPI Reduce 0.01 267138
MPI Send 32.94 3184664
MPI Wait 32.94 2550534

LU MPI Allreduce 0.01 101188654
MPI Barrier <0.01 2960303
MPI Bcast 0.01 12894221
MPI Irecv 0.50 85453
MPI Recv 49.24 1732421
MPI Send 49.74 598220
MPI Wait 0.50 36345911

Table 6.5: MPI operations used by NAS CG, MG, and LU.

of if the noise is experienced on only one process or uniformly across all processes.

The LU code on the other hand shows less tolerance for noise when it is experienced

on all processors versus the case when noise occurs only on one. In both cases, the

LU code appears to have better noise tolerance characteristics than the MG or CG

codes.

This is an interesting result. The standard assumption is that the use of asyn-

chronous operations (such as MPI Irecv) allows codes to be more tolerant of delays

induced by parameters such as interconnect latency. Although MG and CG rely

heavily on these, it appears they are not having their desired effect. Although no

deeper investigation of the delay propagation at the event-level has been made, one

can look at the exclusive time data in Table 6.5 and see a potential reason for this

128



Chapter 6. Experimental studies

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NAS CG Benchmark

Interference level

A
bs

or
pt

io
n 

ra
tio

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NAS LU Benchmark

Interference level

A
bs

or
pt

io
n 

ra
tio

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NAS MG Benchmark

Interference level

A
bs

or
pt

io
n 

ra
tio

 

 

16 CPU
1 CPU

Figure 6.5: Absorption ratio for 16 CPU traces of the Class B NAS CG, LU, and
MG codes under noise on all processes and a single process.

behavior. In the MG and CG case, the synchronous operations that were paired

with the asynchronous operations have approximately the same exclusive time as

the MPI Wait operation that blocks pending completion of the synchronous counter-

part. This can mean that the wait operation is not spinning idle for long, and is

occurring at approximately the same time as the synchronous operation. The traces

leave little room to shrink the duration of the wait under delay.

On the other hand, the LU case shows a very large (at least one order of mag-

nitude) difference in the time for a wait to complete versus the synchronous coun-

terpart. This means that the wait operations are able to shrink and absorb a great

deal of delay locally due to the late arrival in the trace of the process executing the

synchronous operation. This shows that the instruction mix does not dominate the

absorption characteristics of the code. The natural load imbalance seen at runtime

appears to have a stronger effect on absorption.

129



Chapter 6. Experimental studies

6.6 ASCI FLASH

The ASCI FLASH code is a parallel simulation for studying astrophysical ther-

monuclear flashes developed at the University of Chicago. This code was chosen

to represent a highly complex parallel program that contains many different phases

of execution. The FLASH code alternates between phases of numerical computa-

tion on a mesh, adaptive mesh refinement using the PARAMESH [39] package, and

checkpointing I/O operations. FLASH is, from a parallel message passing perspec-

tive, very representative of large workloads that consume time on large scale parallel

machines throughout the scientific community. As such, the FLASH code had two

benefits for this work. First, the non-trivial nature of its message passing graph was a

difficult test for the Chama code. It was used extensively in the development and de-

bugging process. Second, its irregularity causes it to have different noise absorption

characteristics at different points in its execution.

In addition to having a richer structure than other codes, it also possesses a

wider coverage of MPI operations. Table 6.6 gives the set of operations that it uses

along with the instruction mix breakdown and the exclusive time spend within each

operation.

The FLASH code shows poor absorption of simulated noise. The use of collective

operations between phases of computation appears to degrade the ability of the

code to tolerate noise. The FLASH code alternates between phases of computation

based on pairwise operations separated by collective operations. Any delay that

was induced over a subset of processes and not absorbed immediately propagates

to all processors at this time. Although not shown here, it is possible to watch the

execution of the code under the Chama simulator, and see delay displayed for each

process in the GUI build up on subsets of processes only to suddenly propagate to

all processes as soon as a collective occurs.

130



Chapter 6. Experimental studies

MPI Operation Percentage Avg. Exclusive Time (ticks)

MPI Allgather 0.02 46215857
MPI Allreduce 1.58 15249390
MPI Barrier 1.00 131564619
MPI Bcast 2.12 11141296
MPI Gather 0.02 184011
MPI Iprobe 0.12 71427
MPI Irecv 42.34 10871
MPI Isend 0.04 50382
MPI Recv 0.16 658340
MPI Reduce 0.30 348222
MPI Scan 0.06 5193525
MPI Send 0.12 502065
MPI Sendrecv 0.10 2566739
MPI Ssend 42.34 2457312
MPI Waitall 9.69 8173038

Table 6.6: MPI operations used by ASCI FLASH

6.7 Comparison of codes

The most striking results of the initial Chama simulations are apparent when com-

paring the noise absorption characteristics of multiple codes under equal noise envi-

ronments. Studying how multiple codes react to the same level of noise is important.

If a set of codes has been run on a single platform to generate traces under similar

noise conditions, these traces can be used to evaluate different platforms to study

which codes will experience the most performance degradation. If some codes absorb

noise better than others in the new noise environment, then they are better suited

to running in this new environment than others. Their performance will be closer to

their original performance than codes that fail to absorb additional noise as well.

Three characteristics were most important in differentiating the different codes.

These were the mix of MPI operations, the amount of time required for the code to

131



Chapter 6. Experimental studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ASCI Flash

Interference level

A
bs

or
pt

io
n 

ra
tio

 

 

24 CPU
1 CPU

Figure 6.6: Absorption ratio for a 24 CPU FLASH trace with simulated delays on
all processes and a single process.

complete, and the amount of time spent in local computation between MPI opera-

tions. The mix of MPI operations has an impact on whether or not noise absorption

is a function of inherent load imbalance alone, or if noise-tolerant, asynchronous op-

erations can assist. The amount of time required to complete the code dictates the

amount of noise experienced by a program, as the noise level is defines as noise per 10

ms of wall clock time regardless of the runtime of the program. Finally, the amount

of time spent in local computation between MPI operations dictates the likelihood

of a delay being experienced between any two consecutive calls.

Using the Chama output shown in the previous sections, we now make a com-

parison of these codes. The first comparison shown in Fig. 6.7 shows the amount of

delay (in CPU ticks) absorbed by the codes under increasing amounts of interference

on a single process in the set of parallel processes. The absorbed delay is shown on

132



Chapter 6. Experimental studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

6

8

10

12

14

16

18

20

Interference level

T
ic

ks
 o

f a
bs

or
be

d 
de

la
y 

(lo
g 

sc
al

e)

Comparative delay absorption: Interference on one CPU.

 

 

Sweep3D
FLASH
MG
CG
LU

Figure 6.7: A comparison of absorption of noise injected on one processor for the
Sweep3d, FLASH, and NAS codes.

a logarithmic scale, while the interference level is a linear scale. The NAS LU code

shows the greatest interference absorption, while the NAS CG code shows the least.

The FLASH, NAS MG, and Sweep3d codes show comparable absorption characteris-

tics. This plot shows that, although the absorption ratios shown in previous sections

make it difficult to see absorption by three of the codes, they do in fact absorb noise,

and do so to differing degrees.

A second comparison is shown in Fig. 6.8, again using a logarithmic scale for

the total absorbed delay and a linear scale for the level of interference. In this case,

interference was injected into all processes participating in the parallel job instead of

only one. This means that the amount of delay experienced by the parallel program

as a whole was much higher. Furthermore, it means that processes that were forced

to be idle in the case with a single slow process are also delayed, reducing the time

133



Chapter 6. Experimental studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

4

6

8

10

12

14

16

18

20

Interference level

T
ic

ks
 o

f a
bs

or
be

d 
de

la
y 

(lo
g 

sc
al

e)

Comparative delay absorption: Interference on all CPUs.

 

 

Sweep3D
FLASH
MG
CG
LU

Figure 6.8: A comparison of absorption of noise injected on all processors for the
Sweep3d, FLASH, and NAS codes.

they spend idle. As the data shows, the amount of delay that can be absorbed by

each code differentiates more. The NAS LU code remains the best at absorbing

delay, while the NAS CG code remains the least capable of noise absorption. The

interesting part of this comparison with respect to the single processor noise injection

case is that the FLASH, Sweep3d, and NAS MG codes now show different levels of

noise absorption.

It is very likely that in future development of the Chama simulator, relaxing the

conservative method by which delay is propagated through asynchronous operations

and the corresponding MPI Wait calls will allow additional absorption by codes that

utilize them. The conservative implementation used for these experiments does allow

some degree of absorption as the data shows, but not at the level it potentially can.

134



Chapter 7

Conclusion

In this dissertation, the performance analysis practice for studying the effect of in-

terference parallel computers has been defined as a mix of detailed systems bench-

marking and application interference simulation. The use of well defined tools, mi-

crobenchmarks, for inferring machine performance characteristics was described and

demonstrated. This assists in quantifying the effect of operating system and process

preemption perturbations on the performance of individual computational nodes in

parallel programs. Application traces representing real execution behavior of parallel

programs are used to simulate their modified behavior under synthetic performance

conditions to explore application specific sensitivities to performance parameter vari-

ations. The data quantified by microbenchmarks is then used to parameterize these

application sensitivity studies.

This process of measurement of machines and applications, followed by a syn-

thesis of this information to analyze application performance, forms the core of the

methodology. This dissertation has provided new techniques that address the fol-

lowing three goals:

1. A tool for quantifying operating system interference through the FTQ mi-

135



Chapter 7. Conclusion

crobenchmark.

2. A trace-driven simulation for performing analysis of application sensitivity to

performance perturbations.

3. Demonstration of these tools in quantifying interference on real platforms and

its impact on real applications.

This work has already had an impact on systems development at the Los Alamos

National Laboratory. The FTQ microbenchmark is routinely used in the Advanced

Computing Laboratory to compare noise characteristics on new operating systems

research for future generation cluster platforms. The concepts behind FTQ have

also been used by others to build similar microbenchmarks for examining operating

system interference [6]. Chama also forms a major part of a DOE Office of Science

funded FastOS project at Los Alamos. It will help bring a scientific discipline to

the quantitative evaluation of parallel programs with respect to their sensitivity to

performance perturbations.

7.1 Future work

The work presented in this thesis leaves many areas open to future investigation.

These include:

• Parallel languages: Many parallel languages, including ZPL [68] and Co-

Array Fortran [55], compile high-level representations of parallel programs into

a machine-generated sequence of message passing operations. In some cases,

the compiler back-end will even produce C code with MPI-based communica-

tions. Instrumentation can be inserted into the generated code by the compiler

136



Chapter 7. Conclusion

to produce traces compatible with the simulation tool presented in this the-

sis. Work that was recently published [71] regarding collective primitives in

Co-Array Fortran would benefit from a performance study based on the work

presented here.

• Microbenchmark baselining: The ability to measure “ground truth” about

a parallel platform is vital for decoupling the effects of peripheral devices and

basic kernel software from data gathered by the FTQ microbenchmark. A

method for using FTQ to create a baseline measurement was discussed in chap-

ter 4. It remains to be investigated how to use these baseline measurements to

subtract intrinsic noise from the machine from post-boot FTQ measurements.

The inherent error-bars present in the sample intervals due to self-sampling

make it impossible to simply subtract spectra without compensating for this

sampling interval jitter first.

• Extension of Chama beyond MPI: Although Chama is structured to not

rely solely on the abstractions found in the MPI standard, it has not yet been

used with data from other message passing libraries. The most likely candidate

for investigation is the ARMCI library, which is used by the NWChem pack-

age [34]. Although MPI is available on nearly all modern parallel computers,

other models for message passing may be more appropriate for new and future

parallel architectures.

• Correlation with code: Currently Chama can provide statistics on the delay

absorbed and experienced by classes of operations. It is unable to correlate

these delays with specific instances of these operations within the source code

to identify regions that should be focused on for optimization. Using tools such

as TAU that allow operations to be both traced and tagged with their location

in source code, it will be possible to provide such data.

• Verification and validation: Most simulation requires some degree of val-

137



Chapter 7. Conclusion

idation and verification to ensure that the simulation both models what the

user wants and does so correctly. In simulation based scalability studies, the

predictions can be verified by running codes on platforms of the scale mod-

eled. In sensitivity studies, one must artificially induce noise on a system at

the level modeled. Constructing and testing hypotheses with such artificial

“perturbers” will be an interesting step towards verifying that the simulated

results accurately predict noise sensitivity.

138



References

[1] TOP500 Supercomputer Sites. http://www.top500.org/.

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic Local Alignment Search Tool. Journal of Molecular Biology,
215:403–410, 1990.

[3] David A. Bader and Kamesh Madduri. Design and Implementation of the HPCS
Graph Analysis Benchmark on Symmetric Multiprocessors. In Proc. 12th In-
ternational Conference on High Performance Computing (HiPC 2005), volume
3769 of Lecture Notes In Computer Science, pages 465–476, December 2005.

[4] Rosa M. Badia, Jesús Labarta, Judit Giménez, and Francesc Escalé. DIMEMAS:
Predicting MPI applications behavior in Grid environments. Workshop on Grid
Applications and Programming Tools, 8th Global Grid Forum (GGF8), Seattle,
WA, 2003.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[6] Pete Beckman and Susan Coghlan. ZeptoOS: Small Linux for Big Computers.
In June 2005, FastOS PI Meeting, 2005.

[7] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff,
A. Sameh, E. Clementi, S. Chin, D. Scheider, G. Fox, P. Messina, D. Walker,
C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson,
R. Goodrum, and J. Martin. The PERFECT Club Benchmarks: Effective Per-
formance Evaluation of Supercomputers. The International Journal of Super-
computer Applications, 3(3):5–40, 1989.

139



References

[8] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series
Analysis: Forecasting and Control, Third Edition. Prentice Hall, 1994.

[9] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 42, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[10] Arthur W. Burks, Herman H. Goldstine, and John von Neumann. Preliminary
discussion of the logical design of an electronic computing instrument. U.S.
Army Ordnance Department Report, 1946.

[11] Kris Buytaert. The openMosix HOWTO. http://howto.ipng.be/openMosix-
HOWTO, 2002.

[12] David Callahan, John Cocke, and Ken Kennedy. Estimating interlock and im-
proving balance for pipelined architectures. Journal of Parallel and Distributed
Computing, 5(4):334–358, 1988.

[13] C. Clos. A study of non-blocking switching networks. Bell Systems Technical
Journal, 32(2):406–424, March 1953.

[14] James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19:297–301, April 1965.

[15] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design. Addison-Wesley, second edition edition, 1994.

[16] Jack Dongarra. Performance of Various Computers Using Standard Linear
Equations Software. Technical Report CS-89-85, University of Tennessee,
Knoxville TN, 37996, 2005.

[17] Jack Dongarra and Piotr Luszczek. Introduction to the HPC Challenge Bench-
mark Suite. Technical Report UT-CS-05-544, University of Tennessee, 2005.

[18] Jack Dongarra, Allen D. Malony, Shirley Moore, Philip Mucci, and Sameer
Shende. Performance Instrumentation and Measurement for Terascale Sys-
tems. In Proc. International Conference on Computational Science (ICCS 2003),
LNCS 2660, pages 53–62. Springer, 2003.

[19] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Bench-
mark: Past, Present, and Future. Concurrency and Computation: Practice and
Experience, 15:1–18, 2003.

140



References

[20] R. P. Draves, B. N. Bershad, and A. F. Forin. Using microbenchmarks to evalu-
ate system performance. In Proceedings of the Third Workshop on Workstation
Operating Systems, pages 148–153, 1992.

[21] Domenico Ferrari. Computer Systems Performance Evaluation. Prentice Hall,
1978.

[22] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. special issue on ”Pro-
gram Generation, Optimization, and Platform Adaptation”.

[23] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, and H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics
Code for Modelling Astrophysical Thermonuclear Flashes. Astrophysical Jour-
nal Supplement, 131:273–334, 2000.

[24] Brian R. Gaeke, Parry Husbands, Xiaoye S. Li, Leonid Oliker, Katherine A.
Yelick, and Rupak Biswas. Memory-Intensive Benchmarks: IRAM vs. Cache-
Based Machines. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), April 2002.

[25] S. Girona, Jesús Labarta, and Rosa M. Badia. Validation of Dimemas commu-
nication model for MPI collective operations. Proc. 7th European PVM/MPI
Users’ Group Meeting, Lake Balaton, Hungary, pages 39, 46, 2000.

[26] Calvin C. Gotlieb and John K. Metzger. Trace driven analysis of a batch pro-
cessing system. In Proceedings of the 1st symposium on Simulation of computer
systems, pages 214–222, 1973.

[27] Erik Hendriks. BProc: The Beowulf Distributed Process Space. 16th Annual
ACM International Conference on Supercomputing, 2002.

[28] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with
upshot. Technical Report ANL-91/15, Argonne National Laboratory, 1991.

[29] Roger Hockney and Michael Berry. Public international benchmarks for parallel
computers report. Technical Report 1, Parkbench Committee, 1994.

[30] Roger W. Hockney. The Science of Computer Benchmarking. SIAM, 1996.

[31] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley
and Sons, 1991.

[32] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

141



References

[33] E. O. Joslin. Application Benchmarks: The Key to Meaningful Computer Eval-
uations. In Proceedings of the 20th ACM National Conference, pages 27–37,
1965.

[34] Ricky A. Kendall, Edoardo Aprà, David E. Bernholdt, Eric J. Bylaska, Michel
Dupuis, George I. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A. Nichols, Jarek
Nieplocha, T.P. Straatsma, Theresa L. Windus, and Adrian T. Wong. High
performance computational chemistry: An overview of NWChem a distributed
parallel application. J. Comp. Phys. Commun., 128(1–2):260–283, 2000.

[35] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-level
storage system. IRE Transactions, EC-11(2):223–235, 1962.

[36] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order form of
the 3-D discrete ordinates equation on a massively parallel processor. Transac-
tions of the American Nuclear Society, 65:198–199, 1992.

[37] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis.
McGraw-Hill, second edition, 1991.

[38] J. S. Liptay. Structural aspects of the system/360 Model 85, part II: The cache.
IBM Systems Journal, 7(1):15–21, 1968.

[39] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda deFainchtein, and
Charles Packer. PARAMESH : A parallel adaptive mesh refinement community
toolkit. Computer Physics Communications, 126:330–354, 2000.

[40] Allen D. Malony and Sameer Shende. Performance Technology for Complex Par-
allel and Distributed Systems. In Quality of Parallel and Distributed Programs
and Systems, pages 25–41. Nova Science Publishers, Inc., 2003.

[41] John D. McCalpin. A survey of memory bandwidth and machine balance in cur-
rent high performance computers. Newsletter of the IEEE Technical Committee
on Computer Architecture (TCCA), 1995.

[42] Catherine McGeoch. Analyzing Algorithms by Simulation: Variance Reduction
Techniques and Simulation Speedups. ACM Computing Surveys, 24(2):195–212,
1992.

[43] F. H. McMahon. The Livermore Fortran Kernels: A Computer Test Of The
Numerical Performance Range. Technical Report UCRL-53745, Lawrence Liv-
ermore National Laboratory, Livermore, California, 1986.

[44] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance anal-
ysis. In Proceedings of the USENIX Annual Technical Conference, 1996.

142



References

[45] Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, University of Tennessee, 1994.

[46] Message Passing Interface Forum. MPI-2: Extensions to the Message Passing
Interface. Technical report, University of Tennessee, 1996.

[47] Barton P. Miller, Mark D. Callaghan, Joanthan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. The Paradyn Parallel Performance Measurement Tool. IEEE
Computer, 28(11):37–46, 1995.

[48] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defini-
tion of Standard ML (Revised). MIT Press, 1997.

[49] Ronald Minnich, James Hendricks, and Dale Webster. The Linux BIOS. In The
Fourth Annual Linux Showcase and Conference, 2000.

[50] B. Mohr, K. Shanmugam, and A. Malony. Speedy: An Integrated Performance
Extrapolation Tool for pC++ Programs. In H. Beilner and Falko Bause, editors,
TOOLS95, pages 254–268. Springer-Verlag, LNCS 977, September 1995.

[51] Bernd Mohr and Felix Wolf. KOJAK - A Tool Set for Automatic Performance
Analysis of Parallel Applications. In Proceedings of the International Conference
on Parallel and Distributed Computing (Euro-Par 2003), Klagenfurt, Austria,
September 2003.

[52] Ronald Mraz. Reducing the variance of point to point transfers in the IBM 9076
parallel computer. In Proceedings of the 1994 conference on Supercomputing,
1994.

[53] Myricom, Inc. Guide to Myrinet-2000 Switches and Switch Networks, August
2001.

[54] Jarek Nieplocha and Bryan Carpenter. ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-time Systems.
In Proc. 3rd Workshop on Runtime Systems for Parallel Programming (RTSPP)
of International Parallel Processing Symposium IPPS/SPDP ’99, April 1999.

[55] Robert W. Numrich and John K. Reid. Co-Array Fortran for Parallel Program-
ming. ACM Fortran Forum, 17(2):1–31, 1998.

[56] Alan V. Oppenheim, Ronald W. Schager, and John R. Buck. Discrete-Time
Signal Processing, Second Edition. Prentice Hall, 1999.

143



References

[57] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and Sys-
tems, Second Edition. Prentice Hall, 1997.

[58] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publish-
ers, Inc., 1997.

[59] Fabrizio Petrini, Darren Kerbyson, and Scott Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the 8,192 Pro-
cessors of ASCI Q. In ACM/IEEE SC2003, Phoenix, Arizona, November 10–16
2003.

[60] D. Reed, R. Aydt, T. Madhyastha, R. Noe, K. Shields, and B. Schwartz. An
overview of the Pablo performance analysis environment. Technical report, Uni-
versity of Illinois, Urbana, Illinois, 1992.

[61] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz,
and L. F. Tavera. Scalable Performance Analysis: The Pablo Performance
Analysis Environment. In Proc. Scalable Parallel Libraries Conf., pages 104–
113. IEEE Computer Society, 1993.

[62] Giuseppe Rodriguez, Rosa M. Badia, and Jesús Labarta. Generation of Simple
Analytical Models for Message Passing Applications. Proc. 10th Int’l Euro-Par
Conference on Parallel Processing, Pisa, Italy, 2004.

[63] K. Shanmugam and A. Malony. Performance Extrapolation of Parallel Pro-
grams. In Proceedings of ICPP 1995, pages 117–120, August 1995.

[64] Stephen Sherman. Trace driven modeling: An update. In Proceedings of the 4th
symposium on Simulation of computer systems, pages 87–91, 1976.

[65] Stephen Sherman and J. C. Browne. Trace driven modeling: Review and
overview. In Proceedings of the 1st symposium on Simulation of computer sys-
tems, pages 200–207, 1973.

[66] Alan J. Smith. Cache Memories. Computing Surveys, 14(3):473–530, September
1982.

[67] Marc Snir and David A. Bader. A Framework for Measuring Supercomputer
Productivity. International Journal of High Performance Computing Applica-
tions, 18(4):417–432, 2004.

[68] Lawrence Snyder. Programming Guide to ZPL. MIT Press, Cambridge, MA,
USA, 1999.

144



References

[69] Matthew Sottile and Ronald Minnich. Analysis of Microbenchmarks for the
Performance Tuning of Clusters. In Proceedings of Cluster 2004, 2004.

[70] Matthew J. Sottile, Vaddadi P. Chandu, and David A. Bader. Performance
analysis of parallel programs via message-passing graph traversal. In Proceedings
of the 2006 IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2006), 2006.

[71] Matthew J. Sottile, Craig E Rasmussen, and Richard L. Graham. Co-Array
Collectives: Refined Semantics for Co-Array Fortran. In Proceedings of the 3rd
International Workshop on the Practical Aspects of High-level Parallel Program-
ming (PAPP 2006), 2006.

[72] Carl Staelin and Larry McVoy. mhz: Anatomy of a micro-benchmark. In Pro-
ceedings of USENIX technical conference, 1998.

[73] Henry Stark and John W. Woods. Probability and Random Processes with Ap-
plications to Signal Processing. Prentice Hall, 2002.

[74] V. S. Sunderam. PVM: a framework for parallel distributed computing. Con-
currency, Practice and Experience, 2(4):315–340, 1990.

[75] Vampir web page. http://www.pallas.com/e/products/index.htm.

[76] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical
Optimization of Software and the ATLAS Project. Parallel Computing, 27(1–
2):3–35, 2001.

[77] M. V. Wilkes. Slave memories and dynamic storage allocation. IEEE Transac-
tions on Electronic Computers, EC-14(2):270–271, 1965.

145


